K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

<=> (m-5)x = 10 - 4m2

TH1: m - 5 = 0 <=> m = 5

Thay m = 5, ta có :

0x = 10 - 4.52

<=> 0x = -90 (vô lí)

Vậy với m =5, phương trình vô nghiệm

TH2: m-5 \(\ne\)0 <=> \(m\ne5\)

Phương trình có nghiệm duy nhất : \(x=\frac{10-4m^2}{m-5}\)

8 tháng 8 2021

nhờ các bạn giải giúp mk câu d là được

4 tháng 5 2017

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

24 tháng 2 2022

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

19 tháng 2 2018

câu a và b e thay m=0 và m=3 vào pt.

câu c e thay x=-2 vào pt và tìm m

20 tháng 2 2018

a,với m=0 thì

4x^2 - 25 +0^2 + 4*0*x=0

4x^2-25=0

(2x-5)(2x+5)=0

2x-5=0 hoặc 2x+5=0

x=5/2 hoặc x=-5/2

b,với m=-3 thi

4x^2-25+9-12x=0

4x^2-12x-16=0

(2x-4)^2-36=0

(2x-4-6)(2x-4+6)=0

(2x-10)(2x+2)=0

2x-10=0 hoặc 2x+2=0

x=5 hoặc x=-1

c,với x=-2 thì

16-25+m^2-8m=0-4-5

m^2-8m+16-25=0

(m-4)^2-5^2=0

(m-4-5)(m-4+5)=0

(m-9)(m+1)=0

m-9=0 hoặc m+1=0

m=9 hoặc m=-1

2 tháng 3 2021

( m2 - 1 )x2 + ( m - 1 )x - 4m2 + m = 0

Để phương trình có nghiệm x = 2

thì ( m2 - 1 ).4 + ( m - 1 ).2 - 4m2 + m = 0

<=> 4m2 - 4 + 2m - 2 - 4m2 + m = 0

<=> 3m - 6 = 0

<=> m = 2

Vậy với m = 2 thì phương trình nhận x = 2 làm nghiệm

2 tháng 3 2021

Vì phương trình có nghiệm là 2 

Nên thay x = 2 vào phương trình trên ta được :

\(4m^2-4+2m-2-4m^2+m=0\)

\(\Leftrightarrow-6+3m=0\Leftrightarrow m=2\)

Vậy với x = 2 thì m = 2

6 tháng 6 2018

Với m = 1 ta có phương trình:

\(x^2-2x+1=0\)

 Sử dụng đen ta ta có: \(\Delta=\left(-2\right)^2-4.1.1=0\)

nên phương trình có nghiệm kép  \(x_1=x_2=\frac{2}{2}=1\)

Vậy phương trình trên có nghiệm x = 1

b) Đặt phương trình \(x^2-\left(3m-1\right)x+2m^2-m=0\left(1\right)\) \(\Rightarrow\Delta>0\)

\(\Leftrightarrow\left[-\left(3m-1\right)\right]^2-4.1.\left(2m^2-m\right)>0\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)

\(\Leftrightarrow9m^2-6m+1-8m^2+4m>0\)

\(\Leftrightarrow m^2-2m+1>0\)

\(\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)

\(\left|x_1-x_2\right|-2=0\Leftrightarrow\left|x_1-x_2\right|=2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)\(\left(2\right)\)

Áp dụng hệ thức Vi-ét cho phương trình ( 1 ) ta có:

\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)

từ ( 2 ) suy ra \(\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)

\(\Leftrightarrow9m^2-6m+1-8m^2+4m=4\)

\(\Leftrightarrow m^2-2m+1-4=0\)

\(\Leftrightarrow m^2-2m-3=0\Leftrightarrow\)\(\left(m+1\right)\left(m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\m-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=-1\left(tmđk\right)\\m=3\left(tmđk\right)\end{cases}}}\)

Vậy \(m=-1;m=3\)thỏa mãn yêu cầu đề bài đã cho