Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)
\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)
\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)
\(ĐK:x\ge2016;y\ge2017;z\ge2018\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)
Well, it's ez, right? Hướng dẫn thôi nhé :> (*gớm, xài brain nhiều vào :V*)
a, ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
\(\frac{x}{2x+2}-\frac{2x}{x^2-2x-3}=\frac{x}{6-2x}\\ \Leftrightarrow\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\frac{x}{-2\left(x-3\right)}\\ \Leftrightarrow\frac{x\left(x-3\right)-4x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{-x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}\Leftrightarrow...\)
Đến đây khử mẫu, giải PT và xét nghiệm với ĐKXĐ nhé (cứ thấy linh tinh với ĐKXĐ là cho outplay lun :>)
b, ĐKXĐ: \(x\notin\left\{2;3\right\}\)
\(\frac{5}{-x^2+5x-6}+\frac{x+3}{2-x}=0\\ \Leftrightarrow\frac{-5}{-\left(x-2\right)\left(x-3\right)}+\frac{x+3}{2-x}=0\\\Leftrightarrow\frac{-5}{\left(2-x\right)\left(x-3\right)}=\frac{-\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}\Leftrightarrow...\)
c, ĐKXĐ: \(x\notin\left\{-2;1\right\}\)
\(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3-\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\Leftrightarrow...\)
Thế thui, chúc bạn học tốt nha.
dù sao thì cũng cảm ơn cậu.
câu này tớ thật dự không biết thì mới hỏi mà chứ có phải là không dùng óc để suy nghĩ đâu. cậu học tốt nhé
\(a)\dfrac{{x + 1}}{{x - 2}} - \dfrac{{x - 1}}{{x + 2}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{{{x^2} - 4}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} + 3x + 2 - \left( {{x^2} - 3x + 2} \right) = 2{x^2} + 4\\ \Leftrightarrow 6x = 2{x^2} + 4\\ \Leftrightarrow - 2{x^2} + 6x - 4 = 0\\ \Leftrightarrow 2{x^2} - 6x + 4 = 0\\ \Leftrightarrow {x^2} - 3x + 2 = 0\\ \Leftrightarrow {x^2} - 2x - x + 2 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\left( {KTM} \right)\\ x = 1\left( {TM} \right) \end{array} \right. \)
Vậy \(x=1\)
\(b)\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}} \)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2 - 5x}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 3x + 2 - {x^2} - 2x = 2 - 5x\\ \Leftrightarrow 0x = 0\left( {VSN} \right) \)
Vậy phương trình vô số nghiệm
\(c)\dfrac{{x - 2}}{{2 + x}} - \dfrac{3}{{x - 2}} = \dfrac{{2\left( {x - 11} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 2} \right)\left( {x - 2} \right) - 3\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2x - 22}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 4x + 4 - 3x - 6 = 2x - 22\\ \Leftrightarrow {x^2} - 9x + 20 = 0\\ \Leftrightarrow {x^2} - 4x - 5x + 20 = 0\\ \Leftrightarrow x\left( {x - 4} \right) - 5\left( {x - 4} \right) = 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 4 = 0\\ x - 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 4\left( {TM} \right)\\ x = 5\left( {TM} \right) \end{array} \right. \)
Vậy \(x=4,x=5\)
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1+\frac{x-3}{2016}-1\)\(+\frac{x-2043}{8}+3=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-\frac{2018}{2018}+\frac{x-2}{2017}-\frac{2017}{2017}\)\(+\frac{x-3}{2016}-\frac{2016}{2016}+\frac{x-2043}{8}+\frac{24}{8}=0\)
\(\Leftrightarrow\)\(\frac{x-2019}{2018}+\frac{x-2019}{2017}+\frac{x-2019}{2016}\)\(+\frac{x-2019}{8}=0\)
\(\Leftrightarrow\)\(\left(x-2019\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow\)\(x-2019=0\) ( Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\ne0\))
\(\Leftrightarrow\) \(x=2019\)
Vậy phương trình có nghiệm là : \(x=2019\)
\(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{x}{2018}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x}{4070306}+\frac{2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x+2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1+1=\frac{1-x}{4070306}+1\)
\(\Rightarrow\frac{2-x}{2016}=\frac{1-x+4070306}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}=\frac{4070307-x}{4070306}\)
\(\Rightarrow4070306.\left(2-x\right)=2016.\left(4070307-x\right)\)
\(\Rightarrow8140612-4070306x=8205738912-2016x\)
\(\Rightarrow-4070306x+2016x=8205738912-8140612\)
\(\Rightarrow-4068290x=8197598300\)
\(\Rightarrow x=4,95\)
Vậy x=4,95
Chúc bn học tốt
Cộng 2 vế của phương trình với 2 ta có: \(\frac{2-x}{2016}+1=\left(\frac{1-x}{2017}+1\right)-\left(\frac{x}{2018}-1\right)\)
\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}-\frac{x-2018}{2018}\)\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)
\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)\(\Rightarrow2018-x=0\)\(\Leftrightarrow x=2018\)
Vậy tập nghiệm của phương trình là \(S=\left\{2018\right\}\)