Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8,
b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)
(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0
(=) -x2 +12x +4 -12x +12 -4x -16 = 0
(=) -x2 -4x = 0
(=) -x(x+4) = 0
(=) -x = 0 hoặc x +4 = 0
(=) x=0 hoặc x=-4
Vậy S={0;4}
Chúc bạn học tốt.
Lời giải
Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x
PT đã cho trở thành:
x2+a=a2−xx2+a=a2−x
⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0
⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0
⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0
Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x
⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2
⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)
⇒x=1−3√8972⇒x=1−38972
Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1
⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1
⇒x=√8069−12
Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x
PT đã cho trở thành:
x2+a=a2−xx2+a=a2−x
⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0
⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0
⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0
Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x
⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2
⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)
⇒x=1−3√8972⇒x=1−38972
Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1
⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1
⇒x=√8069−12
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
\(1.\frac{7x-3}{x-1}=\frac{2}{3}\) ( \(x\ne1\))
\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)
\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\frac{7}{19}\)
\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)
\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)
\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)
\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)
\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)
\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)
\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)
\(\Leftrightarrow4x^2+5x-7=0\)
\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)
\(\left(2x+\frac{5}{4}\right)^2>0\)
\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)
=> PT vô nghiệm
\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)
\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=\frac{-7}{23}\)
\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)
\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow-6x=-16\)
\(\Leftrightarrow x=\frac{16}{6}\)
\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)
\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)
\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)
\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)
\(\Leftrightarrow x^4+x^3-4x-8=0\)
\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)
Đến đấy mk tắc r xl bạn nhé
\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\) ( ĐKXĐ : \(x\ne\frac{3}{5};x\ne\frac{1}{5}\) )
\(\Leftrightarrow\frac{-4}{\left(5x-3\right)\left(5x-1\right)}=\frac{3\left(5x-3\right)}{\left(5x-3\right)\left(5x-1\right)}-\frac{2\left(5x-1\right)}{\left(5x-3\right)\left(5x-1\right)}\)
\(\Leftrightarrow-4=-15x-9-10x+2\)
\(\Leftrightarrow5x=3\)
\(\Leftrightarrow x=\frac{3}{5}\) ( loại )
Vậy phương trình trên vô nghiệm