K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

ĐKXĐ: x khác 0; x khác 2

x+3/x=3x-1/3(x-2)

<=>3(x+3)(x-2)=x(3x-1)

<=>3x^2 + 3x - 6 = 3x^2 - x

<=>4x=6

<=>x=3/2(tm ĐKXĐ)

vậy,..........

4 tháng 3 2021

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

ĐKXĐ: x ≠ 2

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

\(\Leftrightarrow\dfrac{2+3\left(x-2\right)}{x-2}=\dfrac{3-x}{x-2}\)

<=> 2 + 3x - 6 = 3 - x

<=> 2 + 3x - 6 - 3 + x = 0

<=> 4x - 7 = 0

\(\Leftrightarrow x=\dfrac{7}{4}\)

Vậy:...

4 tháng 3 2021

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\) (ĐKXĐ \(x\ne2\))

\(\Leftrightarrow\dfrac{1}{x-2}+\dfrac{3\left(x-2\right)}{x-2}=\dfrac{3-x}{x-2}\)

\(\Leftrightarrow\dfrac{1+3x-6}{x-2}=\dfrac{3-x}{x-2}\)

\(\Rightarrow3x-5=3-x\)

\(\Leftrightarrow3x+x=3+5\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

Mà \(x\ne2\) nên phương trình đề bài cho vô nghiệm

28 tháng 2 2021

Vì nếu không tìm ĐKXĐ thì xẽ có trường hợp mẫu ở phương trình bằng 0 

\(\Rightarrow\)Lúc này phương trình sẽ vô nghiệm

Chúng ta cần tìm ĐKXĐ trước khi giải phương trình chứa ẩn ở mẫu vì nếu không tìm ĐKXĐ, lỡ như có trường hợp thay ẩn vào mẫu bằng 0 thì phương trình sẽ trở nên vô nghĩa

Tại vì lúc đó phương trình mà bạn nhận được sau khi bạn nhân chéo sẽ không bao giờ tương đương với phương trình bạn đang tìm

28 tháng 2 2021

Để khử mẫu và giải pt.

4 tháng 2 2021

\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{5;-2\right\}\)

\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)

Câu d xem lại đề

4 tháng 2 2021

có ai giúp mình câu c và d không mình đang cần gấpyeu

9 tháng 1 2018

         \(\left(3x+2\right)\left(x-5\right)=\left(2x-5\right)\left(3x+2\right)\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5\right)-\left(2x-5\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5-2x+5\right)=0\)

\(\Leftrightarrow\)\(-x\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)

Vậy...

        \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(2x-1+2-x\right)=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)

Vậy...

9 tháng 1 2018

(3x+2)(x-5) = (2x-5)(3x+2)\(\Rightarrow\)x-5 = 2x-5 \(\Rightarrow\)3x = 0 \(\Rightarrow\)x = 0

(2x-1)2 + (2-x)(2x-1) = 0 \(\Rightarrow\)( 2x - 1 )( 2x - 1 + 2 - x ) \(\Rightarrow\)( 2x - 1 )( x + 1 ) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=1\\x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)