Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) căn(2x+5) - căn(3-x) = x2 -5x + 8
Điều kiện : \(-\frac{5}{2}\Leftarrow x\Leftarrow3\)
căn(2x+5) - căn(3-x) = x^2-5x+8
\(\Leftrightarrow\)[căn(2x+5)-3]-[căn(3-x)-1]=x2 -5x+6
nhân liên hợp
\(\Leftrightarrow\)(2x+5-9) / [căn(2x+5)+3] -(3-x-1) / [căn (3-x)+1]=(x-2)(x-3)
\(\Leftrightarrow\)(2x-4) / [căn (2x+5)+3] -(2-x) / [ căn (3-x)+1]-(x-2)(x-3)=0
\(\Leftrightarrow\)(x-2).M=0
\(\Leftrightarrow\)x=2 hoặc M=0
M=2 / [căn(2x+5)+3]+1 / [căn(3-x)+1]-x+3
2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x
voi -5/2<=x<=3 <->3-x thuoc[0;11/2]
nen M>0
vay x=2
b/ 2+ căn(3-8x) = 6x + căn(4x-1)
dk[1/4;8/3]
6x-2+căn(4x-1)-căn(3-8x)=0
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(...
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x...
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x...
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0
2+4/[căn(4x-1)+căn(3-8x)>0
nen 3x-1=0
x=1/3
a) căn(2x+5) - căn(3-x) = x^2-5x+8
dkxd -5/2<=x<=3
căn(2x+5) - căn(3-x) = x^2-5x+8
<->[can(2x+5)-3]-[can(3-x)-1]=x^2-5x+6
nhan lien hop
<->(2x+5-9)/[can(2x+5)+3] -(3-x-1)/[can(3-x)+1]=(x-2)(x-3)
<->(2x-4)/[can(2x+5)+3] -(2-x)/[can(3-x)+1]-(x-2)(x-3)=0
<->(x-2).M=0
<->x=2 hoac M=0
M=2/[can(2x+5)+3]+1/[can(3-x)+1]-x+3
2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x
voi -5/2<=x<=3 <->3-x thuoc[0;11/2]
nen M>0
vay x=2
b/ 2+ căn(3-8x) = 6x + căn(4x-1)
dk[1/4;8/3]
6x-2+căn(4x-1)-căn(3-8x)=0
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(...
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x...
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x...
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0
2+4/[căn(4x-1)+căn(3-8x)>0
nen 3x-1=0
x=1/3
1 ) đặt ẩn phụ
căn(x+4) = a
căn(4-x) = b
=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x
Thay vào phương trình giải rất dễ
2) điều kiện xác định " x lớn hơn hoặc = 1
từ ĐKXĐ => vế trái lớn hơn hoặc = 1
=> 2 - x lớn hơn hoặc = 1
=> x nhỏ hơn hoặc = 1
kết hợp ĐKXĐ => x = 1
3) mk chưa biết làm
a) b) c) bạn bình phương 2 vế
d) pt <=>3-x=x+3+2.căn(x+2)
<=> -2x=2.căn (x+2)
<=>-x=căn (x+2) (x<=0)
<=> x^2=x+2
<=>x=-1 hoặc x=2
Xong bạn xét ĐKXĐ
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
a) \(\frac{\sqrt{2x-3}}{x-1}=2\)
\(\Leftrightarrow\left(\frac{\sqrt{2x-3}}{x-1}\right)^2=4\)
\(\Leftrightarrow2x-3=4\left(x-1\right)^2\)
\(\Leftrightarrow2x-3=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x-3-4x^2+8x-4=0\)
\(\Leftrightarrow-4x^2+10x-7=0\)
\(\Leftrightarrow-\left[\left(2x^2\right)-2.2x.\frac{10}{4}+\left(\frac{10}{4}\right)^2-18\right]=0\)
\(\Leftrightarrow-\left(2x-\frac{10}{4}\right)^2+18=0\)
\(\Leftrightarrow\left(\sqrt{18}\right)^2-\left(2x-\frac{10}{4}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{18}-2x-\frac{10}{4}\right)\left(\sqrt{18}+2x-\frac{10}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{18}-2x-\frac{10}{4}=0\\\sqrt{18}+2x-\frac{10}{4}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}-2x=\frac{10}{4}-\sqrt{18}\\2x=\frac{10}{4}-\sqrt{18}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+6\sqrt{2}}{4}\\x=\frac{5+6\sqrt{2}}{4}\end{cases}}}\)
Đặt \(\sqrt{2x^2-8x+12}=a>0\)thì được
\(2\left(x^2-4x-6\right)=2\sqrt{2x^2-8x+12}\)
\(\Leftrightarrow2x^2-8x-12=2\sqrt{2x^2-8x+12}\)
\(\Rightarrow a^2-2a-24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=6\\a=-4\left(loai\right)\end{cases}}\)
\(\Rightarrow\sqrt{2x^2-8x+12}=6\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)