\(x^2+\sqrt[3]{x^4-x^2}=2x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)

Đặt \(\hept{\begin{cases}\sqrt{4x^2+x+1}=a\\\sqrt{x^2-x+1}=b\end{cases}}\) \(\left(a,b\ge00\right)\)

Khi đó có pt \(a-2b=a^2-4b^2\)

\(\Leftrightarrow-\left(a-2b\right)\left(a+2b-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}b=\frac{1}{2}-\frac{a}{2}\\b=\frac{a}{2}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-x+1}=\frac{1}{2}-\frac{\sqrt{4x^2+x+1}}{2}\\\sqrt{x^2-x+1}=\frac{\sqrt{4x^2+x+1}}{2}\end{cases}}\)\(\Rightarrow x=\frac{1}{3}\)

3 tháng 9 2017

bh ban co can loi giai nua ko vay?

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

a: \(\Leftrightarrow4x^2-2\sqrt{3}x-1+\sqrt{3}=0\)

\(\text{Δ}=\left(-2\sqrt{3}\right)^2-4\cdot4\cdot\left(\sqrt{3}-1\right)\)

\(=12-16\sqrt{3}+16=28-16\sqrt{3}=\left(4-2\sqrt{3}\right)^2\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{2\sqrt{3}-4+2\sqrt{3}}{8}=\dfrac{4\sqrt{3}-4}{8}=\dfrac{\sqrt{3}-1}{2}\\x_2=\dfrac{2\sqrt{3}+4-2\sqrt{3}}{8}=\dfrac{1}{2}\end{matrix}\right.\)

b: Đặt \(x^2=a\)

Pt sẽ là \(a^2-7a+3=0\)

\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot3=49-12=37>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{7-\sqrt{37}}{2}\left(nhận\right)\\a_2=\dfrac{7+\sqrt{37}}{2}\left(nhận\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{7-\sqrt{37}}{2}}\\x=\pm\sqrt{\dfrac{7+\sqrt{37}}{2}}\end{matrix}\right.\)

c: \(\Leftrightarrow2x^2-x^2+4=-x-2\)

\(\Leftrightarrow x^2+4+x+2=0\)

\(\Leftrightarrow x^2+x+6=0\)

\(\text{Δ}=1^2-4\cdot1\cdot6=-23< 0\)

Do đó:Phương trình vô nghiệm

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)

Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)

nên dấu "=" <=> x = -1

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)

<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)

<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)

<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)

<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)

<=> -x4 + 3x+ 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)

<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2

<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8

<=> x = -1

=> x = -1

1 tháng 8 2020

bình phương 2 vế ?

a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)

\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)

\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)

\(< =>x^2-5x+6=x^2-30x+225\)

\(< =>25x-219=0\)

\(< =>x=\frac{219}{25}\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a:

ĐKXĐ:...........

\(\sqrt{x^2-x+9}=2x+1\)

\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)

Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b:

ĐKXĐ:.........

Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)

\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)

\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)

\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)

\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)

\(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:

\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)

\(\Rightarrow 9(x+3)=4(5x+7)\)

\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)

Vậy..........

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................