Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\left(x^2+4x-3\right)^2-2x\left(x^2+4x-3\right)-3x\left(x^2+4x-3\right)+6x^2\)
\(=\left(x^2+4x-3\right)\left(x^2+4x-3-2x\right)-3x\left(x^2+4x-3-2x\right)\)
\(=\left(x^2+2x-3\right)\left(x^2+4x-3-3x\right)\)
\(=\left(x^2+x-3\right)\left(x+3\right)\left(x-1\right)\)
c: \(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+\left(c-a\right)^3\)
\(=a^3-3a^2b+3ab^2-3b^2c+3bc^2-c^3+c^3-3a^2c+3ac^2-a^3\)
\(=-3a^2b+3ab^2-3b^2c+3bc^2-3a^2c+3ac^2\)
\(=-3\left(a^2b-ab^2+b^2c-bc^2+a^2c-ac^2\right)\)
a) bt \(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x+1\right)\left(x-2\right)\)
kl: ...
b) \(=\left(x+2\right)\left(x^2-8x-15\right)=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)
kl:....
a, \(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)\)
\(=\left(x-8\right)\left(x^2-2x+x-2\right)\)
\(=\left(x-8\right)\left[x\left(x-2\right)+\left(x-2\right)\right]\)
\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
b, \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-6\right)\)
\(=\left(x-5\right)\left(x^2-3x+2x-6\right)\)
\(=\left(x-5\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)
\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)
Chúc bạn học tốt!!!
a/ \(x^3-5x^2+8x-4\)
= \(\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)
= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-4x+4\right)\)
= \(\left(x-1\right)\left(x-2\right)^2\)
b/ \(x^3-x^2+x-1\)
= \(\left(x^3-x^2\right)+\left(x-1\right)\)
= \(x^2\left(x-1\right)+\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+1\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a) co sai de ko
b)x3-2x2+4x2-8x+3x-6=x2(x-2)+4x(x-2)+3(x-2)=(x-2)(x2+4x+3)=(x-2)(x+3)(x+1)
c)x3-2x2+2x2-4x-3x+6=x2(x-2)+2x(x-2)-3(x-2)=(x-2)(x2+2x-3)=(x-2)(x+3)(x-1)
d)x3-3x2+x2-3x-2x+6=x2(x-3)+x(x-3)-2(x-3)=(x-3)(x2+x-2)=(x-3)(x+2)(x-1)
a) x2 + 3x - 18 = 0
⇔ x2 - 3x + 6x - 18 = 0
⇔ x( x - 3 ) + 6( x - 3 ) = 0
⇔ ( x - 3 )( x + 6 ) = 0
⇔ x - 3 = 0 hoặc x + 6 = 0
⇔ x = 3 hoặc x = -6
b) x3 - x2 - 4 = 0
⇔ x3 - 2x2 + x2 - 4 = 0
⇔ x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0
⇔ ( x - 2 )( x2 + x + 2 ) = 0
⇔ x - 2 = 0 hoặc x2 + x + 2 = 0
⇔ x = 2 < do x2 + x + 2 = ( x2 + x + 1/4 ) + 7/4 = ( x + 1/2 )2 + 7/4 ≥ 7/4 > 0 ∀ x
b) x3 - 6x2 - x + 30 = 0
⇔ x3 - 5x2 - x2 + 5x - 6x + 30 = 0
⇔ x2( x - 5 ) - x( x - 5 ) - 6( x - 5 ) = 0
⇔ ( x - 5 )( x2 - x - 6 ) = 0
⇔ ( x - 5 )( x2 - 3x + 2x - 6 ) = 0
⇔ ( x - 5 )[ x( x - 3 ) + 2( x - 3 ) ] = 0
⇔ ( x - 5 )( x - 3 )( x + 2 ) = 0
⇔ x - 5 = 0 hoặc x - 3 = 0 hoặc x + 2 = 0
⇔ x = 5 hoặc x = 3 hoặc x = -2
Trả lời
P=(a+b+c)3-(a+b-c)3-(b+c-a)3-(c+a-b)3
Đặt a+b-c=x, b+c-a=y, c+a-b=z
=>(a+b+c)3-x3-y3-z3
Có x+y+z=a+b-c+b+c-a+c+a-b=a+b+c
=>(x+y+z)3-x3-y3-z3
=>[ (x+y)+z3 ]-x3-y3-z3
=>(x+y)3+z3+3z(x+y) (x+y+z)-x3-y3-z3
=>x3+y3+3xy(x+y)+z3+3z(x+y) (x+y+z)-x3-y3-z3
=>3(x+y) (xy+xz+yz+z2)
=>3(x+y)[x(y+z)+z(y+z)]
=3(x+y) (y+z) (x+z)
Áp dụng hằng đẳng thức trên ta có:
3(a+b-c+b+c-a) (b+c-a+c+a-b) (a+b-c+c+a-b)
=3.2b.2c.2a
=24abc
mk sẽ chỉ hướng để bạn làm bài
đầu tiên ta sẽ nhóm [ (a+b+c)3-(a+b+c)3 ] ở đây ta thấy có hằng đẳng thức
- [ (b+c-a)3 + ( c+a-b)3 ] đây cũng vậy
sau khi khai triển ta sẽ rút gọn sẽ có nhân tử là 2c