K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

a) Ta thấy:
\(\left(x+4\right)\left(x-4\right)=x\left(x-\frac{2}{3}\right)\)
\(\Rightarrow\left(x^2-4x\right)+\left(4x-16\right)=x^2-\frac{2}{3}x\)
\(\Rightarrow\left(x^2-16\right)-\left(4x-4x\right)=x^2-\frac{2}{3}x\)
\(\Rightarrow x^2-16-0=x^2-\frac{2}{3}x\)
\(\Rightarrow x^2-16=x^2-\frac{2}{3}x\)
\(\Rightarrow16=\frac{2}{3}x\)    ( do có cùng hiệu và cùng số bị trừ )
\(\Rightarrow x=16:\frac{2}{3}\)
\(\Rightarrow x=24\)
Vậy x = 24

26 tháng 12 2016

b.) x^3-x^2-2x=0

    x(x^2-x-2)=0

   x(x^2-2x+x-2)=0

   x(x(x-2)+x-2)=0

  x(x-2)(x+1)=0

suy ra x=0 hoặc x-2=0 hoặc x+1=0 

    vậy x=0 hoặc x=2 hoặc x=-1 

hình như câu c đề phải là (x+4)/120 thì phải đó bạn 

c.)(x+4)/120+(x+8)/116=(x+5)/119+(x+7)/117

   (x+4)/120+(x+8)/116-(x+5)/119-(x+7)/117=0

   (x+4)/120+1+(x+8)/116+1-(x+5)/119-1-(x+7)/117-1=0

   (x+4)/120+1+(x+8)/116+1-((x+5)/119+1)-((x+7)/117+1)=0

   (x+124)/120+(x+124)/116-(x+124)/119-(x+124)/117=0

(x+124)(1/120+1/116-1/119-1/117)=0

suy ra x+124=0

 x=-124

16 tháng 2 2020

1) Ta có pt : \(4x^2+\frac{1}{x^2}=8x+\frac{4}{x}\)

\(\Leftrightarrow4x^2+4+\frac{1}{x^2}=8x+4+\frac{4}{x}\)

\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2=4\left(2x+\frac{1}{x}\right)+4\)

\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2-4\left(2x+\frac{1}{x}\right)+4=8\)

\(\Leftrightarrow\left(2x+\frac{1}{x}-2\right)^2=8\)

Đến đây dễ rồi nhé, chia 2 TH.

6 tháng 3 2020

a) \(4\left(x-3\right)^2=9\left(2-3x\right)^2\)

\(\Leftrightarrow\left(2x-6\right)^2=\left(6-9x\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=6-9x\\2x-6=9x-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}11x=12\\7x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{11}\\x=0\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{12}{11};0\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

\(\frac{x+1}{x-1}+\frac{x^2+3x-2}{1-x^2}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x^2+3x-2}{x^2-1}-\frac{x-1}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2-x^2-3x+2-\left(x-1\right)^2}{x^2-1}=0\)

\(\Leftrightarrow\frac{x^2+2x+1-x^2-3x+2-x^2+2x-1}{x^2-1}=0\)

\(\Leftrightarrow-x^2+x+2=0\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)

10 tháng 3 2020

Cậu làm rõ từng bước của câu a giùm tớ với

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

31 tháng 3 2016

a) x vô nghiệm

b)<=>(x2-3x+3)(x2-2x+3)-2x2=(x-3)(x-1)(x2-x+3)

=>(x-3)(x-1)(x2-x+3)=0

TH1:x-3=0

=>X=3

TH2:x-1=0

=>x=1

TH3:x2-x+3=0

<=>(-1)2-4(1.3)=-11

vì -11<0

=>x=1 hoặc 3

bạn tự tiếp làm đi dễ mà

11 tháng 9 2016

\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)

\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)

\(\Leftrightarrow1+2+3+4+..+x=15\)

\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)

\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)

Vậy x=5

Bài 2:

Bậc của đơn thức là 2+5+3=10

Bài 3:

\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)

+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành

\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)

+)TH2: \(x< \frac{1}{4}\) thì pt trở thành

\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)

Vậy x={-9/4;11/4}