K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2020

ĐKXĐ: \(x\ge-\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}x+1=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a+b=\sqrt{3a^2+b^2}\)

\(\Leftrightarrow a^2+2ab+b^2=3a^2+b^2\)

\(\Leftrightarrow a^2-ab=0\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=b\end{matrix}\right.\)

\(\Leftrightarrow x+1=\sqrt{2x+1}\)

\(\Leftrightarrow x^2+2x+1=2x+1\)

\(\Leftrightarrow x=0\)

3 tháng 10 2018

a) \(3\sqrt{x^2+3x}=\left(x+5\right)\left(2-x\right)\)

\(\Leftrightarrow3\sqrt{x^2+3x}=-x^2-3x+10\)

\(\Leftrightarrow\left(x^2+3x\right)+3\sqrt{x^2+3x}-10=0\)

Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\left(1\right)\)

Ta có:

\(\Rightarrow t^2+3t-10=0\)

\(\Rightarrow t_1=2\left(TM\right);t_2=-5\left(KTM\right)\)

thay \(t=2\) vào (1), ta có :

\(\sqrt{x^2+3x}=2\)

\(\Leftrightarrow x^2+3x=4\Leftrightarrow x^2+3x-4=0\)

\(\Rightarrow x_1=1;x_2=-4\)

vậy phương trình có 3 nghiệm x1 = 1, x2 = -4

b) \(\sqrt{5x^2+10x+1}=7-x^2-2x\)

\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6x^2+12x-6\)

\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6\left(x-1\right)^2\)

Đặt \(t=\sqrt{5x^2+10x+1}\) (t lớn hơn hoặc bằng 0) (1)

ta có :...............

mk chỉ bt làm đến đấy thôi, hình như đây là ôn hsg toán 10 à

4 tháng 10 2018

Ko phải bn toán bthg giao trên lớp thôi ak

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu a:

ĐKXĐ: .........

Đặt \(\sqrt{x+4}=a\Rightarrow x+4=a^2\)

PT \(\sqrt{2x+8}=x+4+\sqrt{x+4}\)

\(\Leftrightarrow \sqrt{2(x+4)}=x+4+\sqrt{x+4}\)

\(\Leftrightarrow \sqrt{2}a=a^2+a\)

\(\Leftrightarrow a^2-(\sqrt{2}-1)a=0\)

\(\Leftrightarrow a[a-(\sqrt{2}-1)]=0\Rightarrow \left[\begin{matrix} a=0\\ a=\sqrt{2}-1\end{matrix}\right.\)

Nếu \(a=0\Rightarrow x+4=a^2=0\Rightarrow x=-4\) (thỏa mãn)

Nếu \(a=\sqrt{2}-1\Rightarrow x+4=a^2=(\sqrt{2}-1)^2\Rightarrow x=1-2\sqrt{2}\) (thỏa mãn)

Vậy........