Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}x+1=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+b=\sqrt{3a^2+b^2}\)
\(\Leftrightarrow a^2+2ab+b^2=3a^2+b^2\)
\(\Leftrightarrow a^2-ab=0\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=b\end{matrix}\right.\)
\(\Leftrightarrow x+1=\sqrt{2x+1}\)
\(\Leftrightarrow x^2+2x+1=2x+1\)
\(\Leftrightarrow x=0\)
a) \(3\sqrt{x^2+3x}=\left(x+5\right)\left(2-x\right)\)
\(\Leftrightarrow3\sqrt{x^2+3x}=-x^2-3x+10\)
\(\Leftrightarrow\left(x^2+3x\right)+3\sqrt{x^2+3x}-10=0\)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\left(1\right)\)
Ta có:
\(\Rightarrow t^2+3t-10=0\)
\(\Rightarrow t_1=2\left(TM\right);t_2=-5\left(KTM\right)\)
thay \(t=2\) vào (1), ta có :
\(\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\Leftrightarrow x^2+3x-4=0\)
\(\Rightarrow x_1=1;x_2=-4\)
vậy phương trình có 3 nghiệm x1 = 1, x2 = -4
b) \(\sqrt{5x^2+10x+1}=7-x^2-2x\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6x^2+12x-6\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6\left(x-1\right)^2\)
Đặt \(t=\sqrt{5x^2+10x+1}\) (t lớn hơn hoặc bằng 0) (1)
ta có :...............
mk chỉ bt làm đến đấy thôi, hình như đây là ôn hsg toán 10 à
Câu a:
ĐKXĐ: .........
Đặt \(\sqrt{x+4}=a\Rightarrow x+4=a^2\)
PT \(\sqrt{2x+8}=x+4+\sqrt{x+4}\)
\(\Leftrightarrow \sqrt{2(x+4)}=x+4+\sqrt{x+4}\)
\(\Leftrightarrow \sqrt{2}a=a^2+a\)
\(\Leftrightarrow a^2-(\sqrt{2}-1)a=0\)
\(\Leftrightarrow a[a-(\sqrt{2}-1)]=0\Rightarrow \left[\begin{matrix} a=0\\ a=\sqrt{2}-1\end{matrix}\right.\)
Nếu \(a=0\Rightarrow x+4=a^2=0\Rightarrow x=-4\) (thỏa mãn)
Nếu \(a=\sqrt{2}-1\Rightarrow x+4=a^2=(\sqrt{2}-1)^2\Rightarrow x=1-2\sqrt{2}\) (thỏa mãn)
Vậy........