Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(3x-2\right)\left(1-x\right)}=x^2\) dkxd:2/3=<x=<1
ta co:\(\sqrt{\left(3x-2\right)\left(1-x\right)}=< \frac{3x-2+1-x}{2}=\frac{2x-1}{2}\)
=>\(x^2=< \frac{2x-1}{2}\)
=>\(2x^2-2x+1=< 0\)
=>\(\left(x\sqrt{2}-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=< 0\)vo ly
=>\(x=\varnothing\)
a) dat x-1=a
x=a+1
\(a+1+\sqrt{5+\sqrt{a}}=6\)
\(5-a=\sqrt{5+\sqrt{a}}\)
\(25-10a+a^2=5+\sqrt{a}\)
\(20-10a+a^2-\sqrt{a}=0\)
(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0
đk : x >= 0
\(\sqrt{x}-1+\sqrt{2x+2}-2+\sqrt{3x+6}-3=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{2x+2-4}{\sqrt{2x+2}+2}+\dfrac{3x+6-9}{\sqrt{3x+6}+3}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x+2}+2}+\dfrac{3}{\sqrt{3x+6}+3}\right)=0\Leftrightarrow x=1\left(tm\right)\)
Bạn tự xét ĐKXĐ nhé ^^
Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)-\left[\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right]+\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)=0\)
\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-3-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-2\right)\left(x-1\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x+3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)Tới đây bạn tự làm tiếp ^^
Dài quá ^^