Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
a)Đk:\(x\ge\frac{1}{2}\)
\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)
Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)
\(t^4-4t^2+4t-1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt
đặt \(\sqrt{2x-x^2}=a\)
phương trình trở thành:
\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)
đến đây thì khai triển đi
\(\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{9x^2+18x+8}+1\right)=2\)
\(\Leftrightarrow\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{\left(3x+4\right)\left(3x+2\right)}+1\right)=2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{3x+4}=a\\\sqrt{3x+2}=b\end{matrix}\right.\)\(\left(a,b\ge0\right)\), ta có hpt:
\(\left\{{}\begin{matrix}a^2-b^2=2\left(1\right)\\\left(a-b\right)\left(ab+1\right)=2\end{matrix}\right.\)
\(\Leftrightarrow a^2-b^2=\left(a-b\right)\left(ab+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(ab+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-ab-1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(1-a\right)=0\)
* Trường hợp 1: \(a-b=0\Leftrightarrow a=b\)
\(\Rightarrow\sqrt{3x+4}=\sqrt{3x+2}\)
\(\Leftrightarrow0x=\sqrt{2}-2\)
=> Pt vô no
* Trường hợp 2: \(b-1=0\Leftrightarrow b=1\)
\(\Rightarrow\sqrt{3x+2}=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\left(n\right)\)
* Trường hợp 3: \(a-1=0\Leftrightarrow a=1\)
\(\Rightarrow\sqrt{3x+4}=1\)
\(\Rightarrow x=-1\left(l\right)\)
Vậy x = \(-\dfrac{1}{3}\)
Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)
Phương trình trở thành \(u+v+2uv=17\)
\(\Rightarrow u+v=\sqrt{17}\)
đến đây thì EZ rồi