\(2sinx+\sqrt{3}=0\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2019

a/ \(sinx=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

b/ \(cosx=\frac{\sqrt{3}}{2}=cos\left(\frac{\pi}{6}\right)\Rightarrow x=\pm\frac{\pi}{6}+k2\pi\)

c/ \(cosx=\frac{\sqrt{2}}{2}=cos\left(\frac{\pi}{4}\right)\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)

d/ \(tanx=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\Rightarrow x=-\frac{\pi}{3}+k\pi\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow2sin2x.cos2x+\sqrt{3}sin2x=0\)

\(\Leftrightarrow sin2x\left(2cos2x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\frac{5\pi}{6}+k2\pi\\2x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{5\pi}{12}+k\pi\\x=-\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

d.

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-\sqrt{2}< -1\left(l\right)\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k2\pi\\2x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{5}{\sqrt{3}}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{1}{2}sin4x.cos4x+\frac{1}{8}=0\)

\(\Leftrightarrow\frac{1}{4}sin8x+\frac{1}{8}=0\)

\(\Leftrightarrow sin8x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{6}+k2\pi\\8x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=\frac{7\pi}{48}+\frac{k\pi}{4}\end{matrix}\right.\)

NV
27 tháng 8 2020

e/

\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

d/

\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)

\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

2 tháng 9 2019

=> x = \(\frac{\pi}{3}\)+kπ

NV
28 tháng 10 2020

d.

\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

e.

\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

NV
28 tháng 10 2020

2.a.

ĐKXĐ: ...

\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)

\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

b.

ĐKXĐ: \(x\ne k\pi\)

\(1-sin2x=2sin^2x\)

\(\Leftrightarrow1-2sin^2x-sin2x=0\)

\(\Leftrightarrow cos2x-sin2x=0\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow...\)

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
15 tháng 7 2020

d/

\(\Leftrightarrow\frac{2}{\sqrt{29}}sinx-\frac{5}{\sqrt{29}}cosx=\frac{5}{\sqrt{29}}\)

Đặt \(cosa=\frac{2}{\sqrt{29}}\) với \(0< a< \pi\)

\(\Rightarrow sinx.cosa-cosx.sina=sina\)

\(\Leftrightarrow sin\left(x-a\right)=sina\)

\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=\pi-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

NV
15 tháng 7 2020

c/

\(\Leftrightarrow\frac{\sqrt{3}}{\sqrt{19}}cosx+\frac{4}{\sqrt{19}}sinx=\frac{\sqrt{3}}{\sqrt{19}}\)

Đặt \(cosa=\frac{\sqrt{3}}{\sqrt{19}}\) với \(0< a< \pi\)

\(\Rightarrow cosx.cosa+sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cosa\)

\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)

12 tháng 10 2020

@Nguyễn Việt Lâm giúp em với ạ

13 tháng 10 2020

@Nguyễn Việt Lâm

NV
27 tháng 8 2020

c/

\(\Leftrightarrow2cos4x.sin3x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\2sin3x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\3x=\frac{\pi}{6}+k2\pi\\3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

d/

\(\Leftrightarrow6sinx+3cosx+3=sinx-2cosx+3\)

\(\Leftrightarrow sinx+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

NV
27 tháng 8 2020

a/

\(\Leftrightarrow\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx=sin4x\)

\(\Leftrightarrow sin\left(\frac{\pi}{3}-x\right)=sin4x\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-x+k2\pi\\4x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

b/

\(\Leftrightarrow2sinx.cosx+4sinx.cos^2x-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx+2cos^2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2cos^2x+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)