Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhờ vào năng lực rinegan , ta có thể đoán dc
\(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)
vậy pt sẽ như sau
\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "
\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)
\(\left(1+x\right)\left(8-x\right)=36\)
đến đây m có thể tự làm
c) \(\sqrt{x+5}=5-x^2\)
\(x+5=\left(5-x\right)^2\)
\(x+5=x^4-10x^2+25\) " rồi xong pt bậc 4 :)
\(x^4-10x^2-x+20=0\)
\(x^4=10x^2+x-20\)
\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)
\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)
\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)
\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)
\(\Delta=1-40m^2+800-8m^3+160m\)
\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)
lấy m= -9/2 , cho nhanh thay vào ta đươc
\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)
\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)
\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)
\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)
đến đây cậu có thể làm tiếp :)
câu B hơi gắt cần time suy nghĩ :)
a,\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
\(\Leftrightarrow\sqrt{x-1+4\sqrt{x-1+4}}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1+2}\right)^2}+\sqrt{\left(\sqrt{x-1-3}\right)^2}=5\)
\(\Leftrightarrow\sqrt{x-1}+2+|\sqrt{x-1}-3|=5\Leftrightarrow|\sqrt{x-1}-3|=3-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-1}-3\le0\left(|A|=-A\Leftrightarrow A\le0\right)\)
\(\Leftrightarrow\sqrt{x-1}\le3\Leftrightarrow0\le x-1\le3^2\Leftrightarrow1\le x\le10\)
Nghiệm của phương trình đã cho là : \(1\le x\le10\)
b, \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)=4\)
\(\Leftrightarrow\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]=4\)
\(\Leftrightarrow\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)=4\)
\(\Leftrightarrow\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)
\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}+\frac{3}{2}\right)\left(12x^2+11x+\frac{1}{2}-\frac{3}{2}\right)=4\)
\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2-\left(\frac{3}{2}\right)^2=4\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=4+\frac{9}{4}\)
\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\Leftrightarrow\orbr{\begin{cases}12x^2+11x+\frac{1}{2}=\frac{5}{2}\\12x^2+11x+\frac{1}{2}=-\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}12x^2+11x-2=0\left(1\right)\\12x^2+11x+3=0\left(2\right)\end{cases}}\)
Giải (1) \(\Delta=121+96=217\)
\(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)
Giải (2) \(\Delta=121-144=-23< 0\).Phương trình vô nghiệm.
Phương trình có 2 nghiệm phân biệt :
\(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
a, \(\sqrt{x^2+2x-5}\)= \(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))
\(\Leftrightarrow x^2+2x-5=2x-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
#mã mã#
b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)
\(\Leftrightarrow x\left(x^3-3x+1\right)\)= \(x\left(x^3-1\right)\)
\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0
\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0
\(\Leftrightarrow\)x( 2-3x ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)
vậy pt vô nghiệm
#mã mã#
a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)
So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)
Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha
Ta có \(A^2=\left(x-\sqrt{50}+x-\sqrt{50}-2.\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=\left(2x-2.\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=2.\left(x-\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=2.\left(x^2-x^2+50\right)\)
\(=100\)
Ta có \(\sqrt{x-\sqrt{50}}< \sqrt{x+\sqrt{50}}\)
\(\Rightarrow\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}< 0\)
mà \(\sqrt{x+\sqrt{x^2-50}}\ge0\)
Nên \(A\le0\)
Có \(A^2=100\)
Nên A=-10
\(\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\)
\(=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right).\frac{1}{\sqrt{2}}.\sqrt{2x+2\sqrt{x-\sqrt{50}}.\sqrt{x+\sqrt{50}}}\)
\(=\frac{1}{\sqrt{2}}.\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{\left(\sqrt{x-\sqrt{50}}+\sqrt{x+\sqrt{50}}\right)^2}\)
\(=\frac{1}{\sqrt{2}}.\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\left(\sqrt{x-\sqrt{50}}+\sqrt{x+\sqrt{50}}\right)\)
\(=\frac{1}{\sqrt{2}}.\left(x-\sqrt{50}-x-\sqrt{50}\right)=\frac{-2\sqrt{50}}{\sqrt{2}}=-10\)