K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2015

a) a = 3; b = - 5 ; c = 2 => a + b + c = 0

=> PT có  nghiệm là x = 1 ; và x = c/a = 2/3

b) từ PT thứ hai => x = -5y. thế x = -5y vào PT thứ nhất

=> 3.(-5y) - 4y = 1 <=> -15y - 4y = 1 <=> -19y = 1 <=> y = \(-\frac{1}{19}\) => x = (-5).(\(-\frac{1}{19}\)) = \(\frac{5}{19}\)

Vậy nghiệm của hệ là: (x;y) = (\(\frac{5}{19}\); \(-\frac{1}{19}\) )

 

3 tháng 2 2016

Ta có: a=3; b= -5; c= 2

Δ=b^2 - 4ac = -5^2 - 4.3.2

                     = 25 - 24 = 1
Vì Δ > 0 nên pt có 2 nghiệm phân biệt

 \(x_1=\frac{5-\sqrt[]{1}}{2.3}\) = \(\frac{2}{3}\)

\(X_2=_{ }\frac{5+\sqrt{1}}{2.3}\) =1

 

8 tháng 2 2018

\(4x^4-3x^2-1=0\)

\(\Leftrightarrow\left(4x^4-4x^2\right)+\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(4x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(4x^2+1\right)=0\)

\(2x^2-5x+2=0\)

\(\Leftrightarrow\left(2x^2-4x\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\)

Mình giải phần mấu chốt rồi đó

Còn lại tự giải nhé

8 tháng 2 2018

CÂU 2:

       \(2x^2-5x+2=0\)

\(\Leftrightarrow\)\(2x^2-4x-x+2=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0,5\\x=2\end{cases}}\)

Vậy...

9 tháng 8 2017

cái này có một cách rất dễ:Với máy fx570Vn chẳng hạn,bn bấm Mode>>>Mũi tên xuống>>>1>>>1>>>1>>>3=-5=1=là có kết quả

8 tháng 2 2018

\(4x^4-3x^2-1=0\)

\(4x^4-4x^2+x^2-1=0\)

\(4x^2.\left(x^2-1\right)+\left(x^2-1\right)=0\)

\(\left(4x^2+1\right)\left(x^2-1\right)=0\)

\(\Rightarrow x^2-1=0\)  vì \(4x^2+1>0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=\pm1\)

\(2x^2-5x+2=0\)

\(x^2-\frac{5}{2}x+1=0\)

\(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+1=0\)

\(\left(x+\frac{5}{4}\right)^2-\frac{9}{16}=0\)

\(\left(x+\frac{5}{4}-\frac{3}{4}\right)\left(x+\frac{5}{4}+\frac{3}{4}\right)=0\)

\(\left(x+\frac{1}{2}\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=-2\end{cases}}\)

8 tháng 2 2018
Câu này mình viết thiếu đề câu 2 nha Giải phương trình: Câu 1: 4x4 - 3x2 - 1 = 0 Câu 2: 2x2 - 5x + 2 = 0 Đề đúng đây ạ
6 tháng 4 2017

a). Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(3y^2-12y+9=0\)

\(\Leftrightarrow y^2-4y+3=0\)

Nhận xét : \(a+b+c=1+\left(-4\right)+3=0\)

\(\Rightarrow y_1=1\) (TM \(y\ge0\))

\(y_2=\dfrac{3}{1}=3\)

Với \(y=y_1=1\Rightarrow x^2=1\Leftrightarrow x_1=1;x_2=-1\)

Với \(y=y_2=3\Rightarrow x^2=3\Leftrightarrow x_3=\sqrt{3};x_4=-\sqrt{3}\)

Vậy \(x_1=1;x_2=-1;x_3=\sqrt{3};x_4=-\sqrt{3}\) là các giá trị cần tìm

b) . Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(2y^2+3y-2=0\)

\(\Delta_y=3^2-4\cdot2\cdot\left(-2\right)=9+16=25\) \(\left(\sqrt{\Delta}=5\right)\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow\)\(y_1=\dfrac{-3+5}{2\cdot2}=\dfrac{1}{2}\) (TM \(y\ge0\) )

\(y_2=\dfrac{-3-5}{2\cdot2}=-2\) (KTM \(y\ge0\) )

Với \(y=y_1=\dfrac{1}{2}\Rightarrow x^2=\dfrac{1}{2}\Leftrightarrow x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\)

Vậy \(x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\) là các giá trị cần tìm

c) Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(y^2+5y+1=0\)

\(\Delta_y=5^2-4\cdot1\cdot1=25-4=21\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow y_1=\dfrac{-5+\sqrt{21}}{2\cdot1}=\dfrac{-5+\sqrt{21}}{2}\) (KTM \(y\ge0\))

\(y_2=\dfrac{-5-\sqrt{21}}{2\cdot1}=\dfrac{-5-\sqrt{21}}{2}\) (KTM \(y\ge0\))

Vậy pt đã cho vô nghiệm

10 tháng 4 2017

phần b sai rồi

b, 2x4+3x2-2=0

Đặt x2=t (t>0) ta có

2t2 + 3t-2=0

\(\Delta\)=32-4.2.(-2)=25 \(\Rightarrow\)\(\sqrt{\Delta}\)=5

\(\Delta\)>0 nên PT có 2 nghiệm phân biệt

t1=\(\dfrac{-3+5}{2.2}=\dfrac{1}{2}\) (thỏa mãn)

t2=\(\dfrac{-3-5}{2.2}=-2\) (loại)

với t1=\(\dfrac{1}{2}\) => x2=\(\dfrac{1}{2}\) => x1=\(\pm\sqrt{\dfrac{1}{2}}\) =>x1=\(\pm\dfrac{\sqrt{2}}{2}\)

vậy PT đã cho có 2 nghiệm phân biệt là x1=\(-\dfrac{\sqrt{2}}{2}\) ;x2=\(\dfrac{\sqrt{2}}{2}\)

4 tháng 4 2017

a) 2x2 – 7x + 3 = 0 có a = 2, b = -7, c = 3

∆ = (-7)2 – 4 . 2 . 3 = 49 – 24 = 25, \(\sqrt{\text{∆}}\) = 5

x1 = \(\dfrac{-\left(-7\right)-5}{2.2}\) = \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\), x2 =\(\dfrac{-\left(-7\right)+5}{2.2}=\dfrac{12}{4}=3\)

b) 6x2 + x + 5 = 0 có a = 6, b = 1, c = 5

∆ = 12 - 4 . 6 . 5 = -119: Phương trình vô nghiệm

c) 6x2 + x – 5 = 0 có a = 6, b = 5, c = -5

∆ = 12 - 4 . 6 . (-5) = 121, \(\sqrt{\text{∆}}\) = 11

x1 = \(\dfrac{-5-1}{2.3}\) = -1; x2 = \(\dfrac{-1+11}{2.6}\) =

d) 3x2 + 5x + 2 = 0 có a = 3, b = 5, c = 2

∆ = 52 – 4 . 3 . 2 = 25 - 24 = 1, \(\sqrt{\text{∆}}\) = 1

X1 = \(\dfrac{-5-1}{2.3}\) = -1, x2 = \(\dfrac{-5+1}{2.3}\) = \(\dfrac{-2}{3}\)

e) y2 – 8y + 16 = 0 có a = 1, b = -8, c = 16

∆ = (-8)2 – 4 . 1. 16 = 0

y1 = y2 = \(-\dfrac{-8}{2.1}\) = 4

f) 16z2 + 24z + 9 = 0 có a = 16, b = 24, c = 9

∆ = 242 – 4 . 16 . 9 = 0

z1 = z2 = \(\dfrac{-24}{2.16}\) = \(\dfrac{3}{4}\)

13 tháng 3 2018

NHÂN VỚI 4 TA CÓ

\(\Leftrightarrow12x^2-8xy+4y-20x+8=0\)0

\(\Leftrightarrow\left(12x^2-20x+6\right)-4y\left(2x-1\right)-\left(2x-1\right)+1=0\)

\(\Leftrightarrow2\left(2x-1\right)\left(3x-3\right)-4y\left(2x-1\right)-\left(2x-x\right)+1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(6x-4y-7\right)=-1\)

ĐẾN ĐAY BẠN TỰ GIẢI

13 tháng 3 2018
  1. Rút gọn thừa số chung

  2. Đơn giản biểu thức

  3. Giải phương trình

  4. Giải phương trình

  5. Rút gọn thừa số chung

  6. Đơn giản biểu thức