Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải PT nghiệm nguyên: \(2x^3+2y^3+5xy+1=0\)
Giải:
Nhân với 108 thì:
\(PT\Leftrightarrow216x^3-216y^3+540xy+108=0\)
\(\Leftrightarrow216x^3-216y^3+125+540xy-17=0\)
\(\Leftrightarrow6x-6y+5.36x^2+36y^2+25+36xy-30y-30x=17\)
Đến đây đưa về PT ước số.
P/s: Đến đây là tự làm nhé bạn
Lên mạng có nhé. Link:https://olm.vn/hoi-dap/question/1090897.html
Ta có:
2x^2+3xy-2y^2=7
=> 2x^2-xy+4xy-2y^2=7
=> x(2x-y)+2y(2x-y)=7
=> (2x-y)(x+2y)=7
Ta có: 2x-y, x+2y là nghiệm của 7
Nếu 2x-y=7, x+2y=1
=> 2(2x-y)+x+2y=15
=> 5x=15
=> x=3, y=-1 (TM)
Tương tự:
Nếu 2x-y= 1,x+2y= 7 => x=1,8 , y=2,6 (loại)
Nếu 2x-y=-1,x+2y=-7 => x=-1,8 , y=-2,6(loại)
Nếu 2x-y=-7, x+2y=-1=> x=-3, y=1(loại)
Vậy (x;y) là (3;-1);(-3;1)
1. x+y=xy
=> x-xy+y=0
=> x(1-y)+y=0
=> x(1-y)+y -1 =-1
=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1
* 1-y=-1 => y=2
x-1=1=> x=2
* 1-y =1 => y=0
x-1=-1 => x=0
Ta có: \(\hept{\begin{cases}2x^2+4x+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{cases}}\)
Thay (2) vào (1) ta có:
\(2x^2+2.2x+y^3+3=0\)
\(\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\)
\(\Leftrightarrow2x^2\left(y^3+1\right)+\left(2y+2\right)+\left(y^3+1\right)=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)=0\)
Dễ chứng minh \(\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)>0\)
\(\Rightarrow y+1=0\)
\(\Rightarrow y=-1\)
Thay vào có x=-1
Có thêm điều kiện gì của $x,y$ không bạn? Vì nếu không thì pt vô số nghiệm.
dạ có đề ghi giải phương trình nghiệm nguyên ạ