Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow x^4-4x-1=0\)
\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)
\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)
\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)
Tự giải pt bậc 2 nhak :))))
Ta có : x3 + x2 + 2x - 16 \(\ge0\)
<=> \(x^3-2x^2+3x^2-6x+8x-16\ge0\)
<=> \(x^2\left(x-2\right)+3x\left(x-2\right)+8\left(x-2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Vì \(x^2+3x+8>0\forall x\)
Nên : \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
<=>(x+1)3+x=x3+3x2+4x+1
=>x(x-1)2+5=x3-2x2+x+5
=>x3+3x2+4x+1=x3-2x2+x+5
=>x=\(\pm\frac{\sqrt{89}}{10}-\frac{3}{10}\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
Một hình chữ nhật có chu vi gấp 6 lần chiều rộng biết chiều rộng bằng 4 tính diện tích hình chữ nhật các bạn lm từng bước một giúp mk nhé cảm ơn :)))))
a, x3-3x2+3x-1=0 b, (2x-5)2-(x+2)2=0 c, x2-x=3x-3
<=>x3-x2-2x2+2x+x-1=0 <=>(2x-5-x-2)(2x-5+x+2)=0 <=>x2-x-3x+3=0
<=>(x3-x2)-(2x2-2x)+(x-1)=0 <=>(x-7)(3x-3)=0 <=>x2-4x+3=0
<=>x2(x-1)-2x(x-1)+(x-1)=0 <=>x-7=0 hoặc 3x-3=0 <=>x2-x-3x+3=0
<=>(x-1)(x2-2x+1)=0 1, x-7=0 2, 3x-3=0 <=>(x2-x)-(3x-3)=0
<=>(x-1)(x-1)2=0 <=>x=7 <=>x=1 <=>x(x-1)-3(x-1)=0
<=>x-1=0 Vậy TN của PT là S={7;1} <=>(x-1)(x-3)=0
<=>x=1 <=>x-1=0 hoặc x-3=0
Vậy tập nghiệm của phương trình là S={1} 1, x-1=0 2, x-3=0
<=>x=1 <=>x=3
Vậy TN của PT là S={1;3}
k cho mk nha
x^4-2x^3+3x^2-2x+1
=(x^4-2x^3+x^2)+(x^2-2x+1)
=x^2(x^2-2x+1)+(x^2-2x+1)
=(x^2+1)(x^2-2x+1)
=(x^2+1)(x-1)^2
gọi 2021-x = a
2023-x=b
2x-4044=c
ta có a + b + c=2021-x+2023-x+2x-4044=0
suy ra a + b = -c
suy ra (a+b)^3 =-c^3
ta có a^3 + b^3 + c^3=(a+b)^3 -3ab(a+b) + c^3 = -c^3 +3abc +c^3 = 3abc
ta có (2021-x)^3 + (2023-x)^3 + (2x-4044)^3 = 0
=> 3(2021-x)(2023-x)(2x-4044)=0
=> th 1 x = 2021, th 2 x = 2023; th3 x = 2022