Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 0x = 0 nghiệm đúng với mọi x nên hệ phương trình có vô số nghiệm dạng
KL: Đồ thị hai hàm số trên trùng nhau. Vậy hệ phương trình có vô số nghiệm
\(\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
⇒ \(3x=-5\)
⇒ \(x=-\dfrac{5}{3}\)
\(a,\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y+x+2y=\left(-4\right)+\left(-1\right)\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-5\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\-\dfrac{5}{3}+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\2y=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}3x+5y=11\\2x+5y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=11\\3x+5y-2x-5y=11-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3.2+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
\(\hept{\begin{cases}x-\frac{12}{4}=y-\frac{9}{3}=z-1\left(1\right)\\3x+5y-z=2\left(2\right)\end{cases}}\)
từ (1), ta có: \(x-\frac{12}{4}=y-\frac{9}{3}\Rightarrow y=x-\frac{12}{4}+\frac{9}{3}=x\Rightarrow y=x\)
lại có: \(x-\frac{12}{4}=z-1\Rightarrow z=x-\frac{12}{4}+1=x-2\Rightarrow z=x-2\)
từ (2), ta rút y, z theo x, ta được: \(3x+5x-x+2=2\Rightarrow7x=0\Rightarrow x=y=0\)
\(\Rightarrow z=x-2=0-2=-2\)
vậy (x;y;z)=(0;0;-2)
Thì phương trình thứ 2 các hệ số của x, y đều gấp 2 lần pt 1 mà VP phương trình 2 không gấp đôi VT pt 1 nên vô nghiệm chớ sao
Cả 2 chữ đều là VP hết nha. Viết láu táu nên ghi nhầm thành VT. Sorry nhá
\(\left\{{}\begin{matrix}4x+5y=9\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=9\\10x-5y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}14x=14\\4x+5y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\4.1+5y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)