K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

1/ Hình vẽ: vẽ dễ bạn tự vẽ ha

Có Xét tam giác vuông ABC

\(\widehat{B}+\widehat{C}=90^o\)

\(60^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}=30^o\)

\(sin\widehat{B}=\frac{AC}{BC}=\frac{AC}{20}=sin60^o\)

\(\Rightarrow AC=sin60^o\cdot20=10\sqrt{3}\)(cm)

\(sin\widehat{C}=\frac{AB}{BC}=\frac{AB}{20}=sin30^o\)

\(\Rightarrow AB=sin30^o\cdot20=10\)(cm)

2/

a, ΔMNP cân tại M => MN=MP

=> góc MND=MPD

Xét ΔMND và ΔMPD có:

MN=MP

góc MND=MPD

góc NMD=PMD ( đường phân giác MD )

=> ΔMND = ΔMPD (g.c.g)

b. ΔMND = ΔMPD => góc MDN=MDP = 90 độ

Xét tam giác MDN có góc MDN = 90 độ,ta có:

MN2=MD2+ND2MN2=MD2+ND2

=> 132=122+ND2132=122+ND2

=> ND2=25ND2=25

=> ND = 5

c. Xét ΔHMD và ΔKMD có:

MD chung

góc HMD=KMD

góc MHD=MKD = 90 độ

=> ΔHMD = ΔKMD ( cạnh huyền-góc nhọn)

d. Xét tam giác HDN và tam giác KDP có:

góc HND=KPD

góc NHD=PKD = 90 độ

ND=DP ( do ΔMND = ΔMPD)

=> tam giác HDN = tam giác KDP

=> HD=KD (1)

Có: MN=MH+HN

MP=MK+KP

mà MN=MP ( do ΔMND = ΔMPD )

NH=KP

=> MH=MK ( 2)

Từ (1) (2) =>

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.Bài 3:...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7 2024

Gì nhiều vậy???

 

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

3 tháng 10 2021

a) Xét tam giác MND có:

\(MN^2+MD^2=10^2+24^2=676\)

\(DN^2=26^2=676\)

\(\Rightarrow MN^2+MD^2=DN^2\)

=> Tam giác MND vuông tại M(Pytago đảo)

b) Áp dụng HTL:

\(MI.DN=MN.MD\)

\(\Rightarrow MI=\dfrac{MN.MD}{DN}=\dfrac{10.24}{26}=\dfrac{120}{13}\left(cm\right)\)

c) Xét tứ giác MKID có:

\(\widehat{KMD}=\widehat{MKI}=\widehat{MDI}=90^0\)

=> Tứ giác MKID là hình chữ nhật

=> HK=MI

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

22 tháng 7 2021

a)Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\Leftrightarrow BC=\dfrac{AB^2}{BH}=5\)(cm)

\(HC=BC-HB=5-1,8=3,2\)(cm)

\(HA^2=HB.HC\Leftrightarrow HA=\sqrt{HB.HC}=\sqrt{1,8.3,2}=2,4\)(cm)

\(AC^2=HC.BC\Leftrightarrow AC=\sqrt{HC.BC}=\sqrt{3,2.5}=4\) (cm)

Vậy...

b) Dễ cm được AIMK là hcn (vì tứ giác có 3 góc vuông)

\(\Rightarrow AM=IK\)

Do AM là đường trung tuyến trong tam giác vuông ABC

\(\Rightarrow AM=\dfrac{BC}{2}=2,5\) (cm)

Vậy IK=2,5cm

a)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=3^2-1.8^2=5.76\)

hay AH=2,4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow AC^2=2.4^2+3.2^2=16\)

hay AC=4(cm)