Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đề câu a phải như vậy nè:
\(a,\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-1}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\)\(Đkxđ:\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)
Đặt: \(X=\frac{1}{x-2};Y=\frac{1}{y-1}\)
Ta có hệ sau:
\(\hept{\begin{cases}X+Y=1\\2X-3Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2\left(1-Y\right)-3Y=1\end{cases}}}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2-5Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=\frac{4}{5}\\Y=\frac{1}{5}\end{cases}}}\)
Với \(X=\frac{4}{5}\Rightarrow\frac{1}{x-2}=\frac{4}{5}\Leftrightarrow4\left(x-2\right)=5\Leftrightarrow x=\frac{13}{4}\)
Với \(Y=\frac{1}{5}\Rightarrow\frac{1}{y-1}=\frac{1}{5}\Leftrightarrow y-1=5\Leftrightarrow y=6\)
Vậy nghiệm của hệ pt là: \(\left(x;y\right)=\left(\frac{13}{4};6\right)\)
Câu b e nghĩ đề như vậy nè:
\(b,\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{3}{6}\end{cases}}\) \(Đkxđ:\hept{\begin{cases}x>7\\x>-6\end{cases}}\)
Đặt \(\frac{1}{\sqrt{x-7}}=a\left(a>0\right);\frac{1}{\sqrt{y+6}}=b\left(b>0\right)\)
Ta có hệ pt mới: \(\hept{\begin{cases}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\end{cases}}\left(tmđk\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x-7=9\\x+6=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=30\end{cases}\left(tmđk\right)}\)
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(16;30\right)\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Câu 2: ĐK..............
PT $(1)\Rightarrow \sqrt{y+1}=\frac{x-3}{2}$
$\Rightarrow y+1=\frac{(x-3)^2}{4}$
PT $(2)\Leftrightarrow x^3-4x^2\sqrt{y+1}+4x(y+1)-8(y+1)-9x+60=0$
$\Leftrightarrow x^3-4x^2.\frac{x-3}{2}+4x.\frac{(x-3)^2}{4}-8.\frac{(x-3)^2}{4}-9x+60=0$
$\Leftrightarrow x^3-2x^2(x-3)+x(x-3)^2-2(x-3)^2-9x+60=0$
$\Leftrightarrow -x^2+6x+7=0$
$\Leftrightarrow x=7$ hoặc $x=-1$
Từ PT $(1)$ dễ thấy $x\geq 3$ nên $x=7$
$\Rightarrow y=\frac{(x-3)^2}{4}=4$
Vậy...........
Câu 1:
ĐK:..............
PT $\Leftrightarrow x-3+\sqrt{x-1}=\sqrt{2(x^2-5x+5)}$
$\Rightarrow (x-3+\sqrt{x-1})^2=2(x^2-5x+5)$
$\Leftrightarrow 2(x-3)\sqrt{x-1}=x^2-5x+2$
$\Leftrightarrow x^2-5x+2-2(x-3)\sqrt{x-1}=0$
$\Leftrightarrow (x^2-6x+9)+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3)^2+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3-\sqrt{x-1})^2=6$
$\Leftrightarrow x-3-\sqrt{x-1}=\pm \sqrt{6}$
$\Leftrightarrow \sqrt{x-1}=x-3\pm \sqrt{6}$
$\Rightarrow x-1=(x-3\pm \sqrt{6})^2$ (ĐK: $x\geq 3\pm \sqrt{6}$)
Giải PT ta thu được $x=\frac{1}{2}(7+2\sqrt{6}+\sqrt{9+4\sqrt{6}})$