Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
\(\left\{{}\begin{matrix}xy+y+x+1=10\\yz+y+z+1=5\\zx+x+z+1=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=10\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=2\end{matrix}\right.\)
\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\)
\(\Rightarrow\left\{{}\begin{matrix}z+1=1\\x+1=2\\y+1=5\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).
Dễ thấy $x+y+z\neq 0$. Khi đó ta có:
\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)
\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)
Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)
Thay vào PT thứ nhất của $(*)$ suy ra:
\(2k(2k+3k+4k)=2\)
\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)
Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)
Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=4\\y+z+yz+1=2\\x+z+xz+1=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=2\\\left(x+1\right)\left(z+1\right)=2\end{matrix}\right.\)
Lấy \(\dfrac{pt\left(2\right)}{pt\left(3\right)}\Leftrightarrow\dfrac{y+1}{x+1}=1\)\(\Leftrightarrow y+1=x+1\)\(\Leftrightarrow x=y\)
Thay vào \(pt(1)\)\(\Leftrightarrow x^2+2x=3\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-3\end{matrix}\right.\)
Thay vào \(pt\left(3\right)\)\(\Leftrightarrow\left[{}\begin{matrix}z+1+z=1\\z-3-3z=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}z=0\\z=-2\end{matrix}\right.\)
Vậy....
3(x2 + y2 + x2) = 3[(x + y + z)2 - 2(xy + yz + zx)] = 3(9 + 2) = 33
Pt thứ 3 tương đương với pt:
x3 + y3 + z3 + 6 = 33
<=> x3 + y3 + z3 = 27 = (x + y + z)3
<=> (x + y + z)3 - x3 - y3 - z3 = 0
<=> 3(x + y)(y + z)(z + x) = 0
Đến đây khá dễ rồi, tự làm tiếp nhé