K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Do \(2y^2-x^2=1\)

\(\Rightarrow2x^3-y^3=\left(2y-x\right)\left(2y^2-x^2\right)\)

\(\Leftrightarrow2x^3-y^3=4y^3-2yx^2-2y^2x+x^3\)

\(\Leftrightarrow x^3+2yx^2+2y^2x-5y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+3xy+5y^2\right)=0\)

\(\Rightarrow x=y\)

easy from here

15 tháng 1 2020

3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1 \)

<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)

hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường

19 tháng 7 2020

giup tui mấy bài toán tui mới đăng nhaa :33

NV
19 tháng 7 2020

3.

ĐKXĐ: ...

Trừ vế cho vế ta được:

\(2x-2y=y-x+\sqrt{y-2}-\sqrt{x-2}\)

\(\Leftrightarrow3\left(x-y\right)+\sqrt{x-2}-\sqrt{y-2}=0\)

\(\Leftrightarrow3\left(x-y\right)+\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(3+\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)

\(\Leftrightarrow x=y\) (ngoặc to luôn dương)

Thay vào pt đầu:

\(2x-2=x+\sqrt{x-2}\)

\(\Leftrightarrow x-2=\sqrt{x-2}\Rightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=3\end{matrix}\right.\)

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Câu 1: ĐK: $x\geq 1$

Xét PT(1):

\(x^2+xy(2y-1)=2y^3-2y^2-x\)

\(\Leftrightarrow x^2-xy+x+(2xy^2-2y^3+2y^2)=0\)

\(\Leftrightarrow x(x-y+1)+2y^2(x-y+1)=0\)

\(\Leftrightarrow (x-y+1)(x+2y^2)=0\)

\(\Rightarrow \left[\begin{matrix} y=x+1\\ 2y^2=-x\end{matrix}\right.\)

Nếu $y=x+1$, thay vào PT(2):

$\Rightarrow 6\sqrt{x-1}+x+8=4x^2$

$\Leftrightarrow 4(x^2-4)-6(\sqrt{x-1}-1)-(x-2)=0$

\(\Leftrightarrow 4(x-2)(x+2)-6.\frac{x-2}{\sqrt{x-1}+1}-(x-2)=0\)

\(\Leftrightarrow (x-2)\left[4(x+2)-\frac{6}{\sqrt{x-1}+1}-1\right]=0\)

Với mọi $x\geq 1$ dễ thấy:

$4(x+2)\geq 12$

\(\frac{6}{\sqrt{x-1}+1}+1\leq 6+1=7\)

Suy ra biểu thức trong ngoặc vuông lớn hơn $0$

$\Rightarrow x-2=0\Rightarrow x=2$ (thỏa mãn)

$\Rightarrow y=x+1=3$

Nếu $2y^2=-x\Rightarrow -x\geq 0\Rightarrow x\leq 0$ (vô lý do $x\geq 1$)

Vậy $(x,y)=(2,3)$

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Câu 2:

Nếu như bạn nói những bài toán này được giải theo kiểu đưa về phân tích thành nhân tử thì đề bài của bạn có lẽ sai vì không pt nào trong câu này đưa được về dạng tích. Mình thấy PT(1) có lẽ cần sửa lại thành:

\(x\sqrt{x^2+y}+y=\sqrt{x^4+x^3}+x\)

ĐKXĐ: $x\geq 1; y\geq 0$

Với $x\geq 1; y\geq 0$. Xét PT(1):

\(\Leftrightarrow (x\sqrt{x^2+1}-\sqrt{x^4+x^3})+(y-x)=0\)

\(\Leftrightarrow \frac{x^2(x^2+y)-(x^4+x^3)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)

\(\Leftrightarrow \frac{x^2(y-x)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)

\(\Leftrightarrow (y-x)\left[\frac{x^2}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+1\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq 1; y\geq 0$ nên $y-x=0\Rightarrow y=x$

Thay vào PT(2):

$x+\sqrt{x}+\sqrt{x-1}+\sqrt{x(x-1)}=\frac{9}{2}$

\(\Leftrightarrow 2x+2\sqrt{x}+2\sqrt{x-1}+2\sqrt{x(x-1)}-9=0\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1})^2+2(\sqrt{x}+\sqrt{x-1})-8=0\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1}-2)(\sqrt{x}+\sqrt{x-1}+4)=0\)

Dễ thấy \(\sqrt{x}+\sqrt{x-1}+4>0\) nên $\sqrt{x}+\sqrt{x-1}=2$

$\Rightarrow 2x-1+2\sqrt{x(x-1)}=4$

$\Leftrightarrow 5-2x=2\sqrt{x(x-1)}$

Tiếp tục bình phương kết hợp với điều kiện $x\leq \frac{5}{2}$ ta tìm được $x=\frac{25}{16}$

Vậy $x=y=\frac{25}{16}$

NV
26 tháng 9 2020

\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2y^3=2\\x^2y+2xy^2+y^3=2\end{matrix}\right.\)

\(\Rightarrow2x^3-x^2y-2xy^2+y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+xy-y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=-x\\y=2x\end{matrix}\right.\) thay vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}x^3+x^3=1\\x^3+\left(-x\right)^3=1\\x^3+\left(2x\right)^3=1\end{matrix}\right.\) \(\Leftrightarrow...\)

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

NV
5 tháng 5 2019

a/ ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)

\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)

Phương trình trở thành:

\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)

\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)

\(\Leftrightarrow x^2-16=x^2-16x+64\)

\(\Rightarrow x=5\)

b/ \(x\ge-\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:

\(a+3b=3+ab\)

\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)

\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)

NV
5 tháng 5 2019

Bài 2:

a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)

b/Cộng vế với vế:

\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)

\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)

\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)

- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)

\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)