Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:
\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)
\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)
\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)
\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)
P/s: Không chắc cho lắm ạ.
Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,
Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6
Help meeee, please!
thanks nhiều
*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.
a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)
Cộng 2 pt ta đc: x=1
Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)
Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)
Những câu sau làm ttự.
#Walker
ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?
a, #Góp ý từ nhiều người nhưng họ không giải nên t làm giùm
ĐK: \(x\le3\)
\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\left(1\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+y^2+1-2xy+2x-2y=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\) \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) Thay vào (2)
\(\left(2\right)\)\(\Leftrightarrow x^3+3\left(x+1\right)^2+5x-12=\left[12-\left(x+1\right)\right]\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+8x=\left(11-x\right)\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\left(3-x\right)\sqrt{3-x}+8\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\sqrt{\left(3-x\right)^3}+3\sqrt{\left(3-x\right)^2}+8\sqrt{3-x}\)
\(\Leftrightarrow x=\sqrt{3-x}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{13}}{2}\left(tm\right)\Rightarrow y=\frac{1+\sqrt{13}}{2}\)
Vậy...
Akai Haruma, No choice teen, Arakawa Whiter, Phạm Hoàng Lê Nguyên, Vũ Minh Tuấn, tth, HISINOMA KINIMADO, Nguyễn Việt Lâm
Mn giúp e vs ạ! thanks!
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(1-\sqrt{3}\right)x+2y=1-\sqrt{3}\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\sqrt{3}\\x=1+\left(1+\sqrt{3}\right)\cdot\left(-\sqrt{3}\right)=-2-\sqrt{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\x+\sqrt{2}y=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\in R\\x=-\sqrt{3}-y\sqrt{2}\end{matrix}\right.\)
Lời giải:
a)
Nhân $\sqrt{2}$ vào PT(1) và $\sqrt{3}$ vào PT(2) ta có:
HPT \(\Leftrightarrow \left\{\begin{matrix} \sqrt{6}x-4y=7\sqrt{2}\\ \sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow (\sqrt{6}x-4y)-(\sqrt{6}x+9y)=13\sqrt{2}\)
\(\Leftrightarrow -13y=13\sqrt{2}\Rightarrow y=-\sqrt{2}\)
\(\Rightarrow x=\frac{7+2\sqrt{2}y}{\sqrt{3}}=\sqrt{3}\)
Vậy..............
b)
Nhân $2+\sqrt{3}$ vào PT(1) và $(\sqrt{2}+1)$ vào PT(2) thu được:
\(\left\{\begin{matrix} (\sqrt{2}+1)(2+\sqrt{3})x-y=2(2+\sqrt{3})\\ (2+\sqrt{3})(\sqrt{2}+1)+y=2(\sqrt{2}+1)\end{matrix}\right.\)
Trừ theo vế:
\(\Rightarrow -2y=2(2+\sqrt{3})-2(\sqrt{2}+1)=2+2\sqrt{3}-2\sqrt{2}\)
\(\Rightarrow y=\sqrt{2}-\sqrt{3}-1\)
\(\Rightarrow x=\frac{2+(2-\sqrt{3})y}{\sqrt{2}+1}=1+\sqrt{2}-\sqrt{3}\)
Vậy.........