\(\left\{{}\begin{matrix}2x-y=3\\x^2-y=6\end{matrix}\right.\)

help mee

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

\(\left\{{}\begin{matrix}2x-y=3\left(1\right)\\x^2-y=6\left(2\right)\end{matrix}\right.\)

Trừ vế theo vế của (2) cho (1)\(\Leftrightarrow x^2-2x=3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}y=3\\y=-5\end{matrix}\right.\)

Vậy (x;y)={(3;3);(-1;-5)}

28 tháng 4 2019

x = y = 3

Thế vào :

a) 2.3-3 = 3

b ) 3^2-3 = 6

2 tháng 1 2020

Nguyễn Thị Trà My lần sau cmt thì phiền đọc kĩ hộ cái nhé=))))

vô số nghiệm not vô nghiệm :)

2 tháng 1 2020

Ta có :

\(\left\{{}\begin{matrix}mx+2y=2m\\x+y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\mx+2\left(3-x\right)=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\mx-2x=2m-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x\left(m-2\right)=2m-6\end{matrix}\right.\)

+) Với \(\left\{{}\begin{matrix}m-2=0\\2m-6\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m\ne3\end{matrix}\right.\) \(\Leftrightarrow m=2\)

Khi đó : \(\left\{{}\begin{matrix}x\in R\\y=3-x\end{matrix}\right.\)

\(\Leftrightarrow\) hệ pt vô số nghiệm

+) \(m-2\ne0\Leftrightarrow m\ne2\)

Khi đó hệ pt có nghiệm duy nhất là :

\(\left\{{}\begin{matrix}x=\frac{2m-6}{m-2}\\y=\frac{m}{m-2}\end{matrix}\right.\)

Vậy....

15 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)

11 tháng 4 2017

1)

\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)

trừ 2 vế của pt cho nhau ta tìm được

\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)

để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)

NV
15 tháng 3 2019

1/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)

Cộng vế với vế ta được:

\(x-2+y+1-2\sqrt{\left(x-2\right)\left(y+1\right)}=0\) (1)

- Nếu \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(\sqrt{x-2}-\sqrt{y+1}\right)^2=0\Rightarrow\sqrt{x-2}=\sqrt{y+1}\Leftrightarrow x=y+3\)

Thay vào pt dưới:

\(-2\left(y+3\right)+y^2+y=6\Leftrightarrow y^2-y-12=0\Rightarrow\left\{{}\begin{matrix}y=4\\x=7\end{matrix}\right.\)

- Nếu \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2-x+\left(-y-1\right)+2\sqrt{\left(2-x\right)\left(-y-1\right)}=0\)

\(\Leftrightarrow\left(\sqrt{2-x}+\sqrt{-y-1}\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}2-x=0\\-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Thay vào pt dưới ta thấy ko thỏa mãn \(\Rightarrow\) loại

Vậy hệ có cặp nghiệm duy nhất \(\left(x;y\right)=\left(7;4\right)\)

NV
15 tháng 3 2019

2/ \(x^4+2x^2y+y^2=4x^2y+y-4\Leftrightarrow\left(x^2+y\right)^2=4x^2y+y-4\)

Thay pt trên vào dưới:

\(16x^2=4x^2y+y-4\Leftrightarrow4x^2\left(y-4\right)+y-4=0\)

\(\Leftrightarrow\left(y-4\right)\left(4x^2+1\right)=0\Leftrightarrow y-4=0\)

\(\Rightarrow y=4\Rightarrow x^2+4=4x\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy hệ có cặp nghiệm duy nhất: \(\left(x;y\right)=\left(2;4\right)\)

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

2 tháng 12 2018
https://i.imgur.com/yw2PEGF.gif