Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-3y\end{matrix}\right.\left(I\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2x^2y+xy+y^2+2x^2+x+2y=7\\4x^2+x+3y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2+2x^2+x+2y-4x^2-x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2-2x^2-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\x\left(2x^2+y\right)+y\left(2x^2+y\right)-\left(2x^2+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\left(1\right)\\\left[{}\begin{matrix}2x^2=-y\\y=1-x\end{matrix}\right.\end{matrix}\right.\)
Xét TH1:\(2x^2=-y\) (vô lý) =.> Loại
Xét TH2: y=1-x
Thay \(y=1-x\) vào (1) ta được :
(1)\(\Leftrightarrow4x^2+x+3\left(1-x\right)=7\)
\(\Leftrightarrow4x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{17}}{4}\\x_2=\dfrac{1-\sqrt{17}}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x1=\dfrac{1+\sqrt{17}}{4}\\y1=\dfrac{3-\sqrt{17}}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x2=\dfrac{1-\sqrt{17}}{4}\\y2=\dfrac{3+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\)
KL: phương trình (I) có 2 nghiệm là (x;y)=........
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
1/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)
Cộng vế với vế ta được:
\(x-2+y+1-2\sqrt{\left(x-2\right)\left(y+1\right)}=0\) (1)
- Nếu \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{x-2}-\sqrt{y+1}\right)^2=0\Rightarrow\sqrt{x-2}=\sqrt{y+1}\Leftrightarrow x=y+3\)
Thay vào pt dưới:
\(-2\left(y+3\right)+y^2+y=6\Leftrightarrow y^2-y-12=0\Rightarrow\left\{{}\begin{matrix}y=4\\x=7\end{matrix}\right.\)
- Nếu \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2-x+\left(-y-1\right)+2\sqrt{\left(2-x\right)\left(-y-1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{2-x}+\sqrt{-y-1}\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}2-x=0\\-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Thay vào pt dưới ta thấy ko thỏa mãn \(\Rightarrow\) loại
Vậy hệ có cặp nghiệm duy nhất \(\left(x;y\right)=\left(7;4\right)\)
2/ \(x^4+2x^2y+y^2=4x^2y+y-4\Leftrightarrow\left(x^2+y\right)^2=4x^2y+y-4\)
Thay pt trên vào dưới:
\(16x^2=4x^2y+y-4\Leftrightarrow4x^2\left(y-4\right)+y-4=0\)
\(\Leftrightarrow\left(y-4\right)\left(4x^2+1\right)=0\Leftrightarrow y-4=0\)
\(\Rightarrow y=4\Rightarrow x^2+4=4x\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy hệ có cặp nghiệm duy nhất: \(\left(x;y\right)=\left(2;4\right)\)