Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\) với mọi số thực x
b/ \(A=\left(x-1\right)\left(x-3\right)+11=x^2-4x+14=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)
Suy ra Min A = 10 <=> x = 2
\(B=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
Đặt \(t=x^2+3x\) thì \(B=t^2-1\ge-1\)
Do đó Min B = -1 <=> t = 0 <=> \(\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
c/\(C=5-4x^2+4x=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\)
Suy ra Max C = 6 <=> x = 1/2
\(D=-x^2-4x-y^2+2y=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)
\(=-\left(x+2\right)^2-\left(y-1\right)^2+5\le5\)
Suy ra Max D = 5 <=> (x;y) = (-2;1)
a, 85.12,7+5.3.12,7 c, 37,5.6,5-7,5.3,4-6,6.7,5+3,5.37,5
=12,7.(85+5.3) =37,5.(6,5+3,5)-7,5.(3,4+6,6)
=12,7.(85+15) =37,5.10-7,5.10
=12,7.100 =375-75
=127 =300
b, 52.143-52.39-8.26
=52.(143-39)-8.26
=52.104-8.26
=52.4.26-8.26
=26.(52.4-8)
=26.(208-8)
=26.200
=5200
\(E=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
Vì: \(-\left(x-2\right)^2\le0\)
=> \(-\left(x-2\right)^2+5\le5\)
Vậy GTLN của E là 5 khi x=2
\(F=-x^2+3x+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\)
Vì: \(-\left(x-\frac{3}{2}\right)^2\le0\)
=> \(-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)
Vậy GTLN của F là \(\frac{17}{4}\) khi \(x=\frac{3}{2}\)
\(G=3-10x^2-4xy-4y^2=-\left(x^2+4xy+4y^2\right)-9x^2+3=-\left(x-2y\right)^2-9x^2+3\)
Vì: \(-\left(x-2y\right)^2-9x^2\le0\)
=> \(-\left(x-2y\right)^2-9x^2+3\le3\)
Vậy GTLN của G là 3 khi x=y=0
\(H=-x^2-2y^2+2xy-y+1=-\left(x^2-2xy+y^2\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{5}{4}\)
\(=-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì: \(-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-y\right)^2-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy GTLN của H là \(\frac{5}{4}\) khi \(x=y=\frac{1}{2}\)
Bạn đăng lại cái đề cho mk dễ nhìn được k. Nhìn ngang vầy khó nhìn...
học lớp chuyên à, bài này chỉ gợi ý thôi nhá, nên ko hiểu cứ hỏi, trình bày dài lắm
câu a tách hết ra, rồi nhóm 2m chung
câu b thì... ko biết
câu c nhân 2 vế với 2
câu d chuyển VP sang VT rồi sử dụng hằng đẳng thức nâng cao để giải quyêt, nếu chưa học thì hỏi mình nói cho, nó nắm trong phần thi qua mạng
đề của bn khó thế
lớp mk vừa ktra chiều nãy câu 2 của bn lớp mk chỉ có 2 câu
Ta có :
A=x2+5y2-2xy+2x-6y+5
=(x2-y2+1-2xy+2x-2y)+(4y2-8y+4)
=(x-y+1)2+(2y-2)2
Ta thấy (x-y+1)2≥0 ∀xy
(2y-2)2≥0 ∀y
⇒(x-y+1)2+(2y-2)2≥0 ∀xy
hay A≥0
Dấu "=" xảy ra ⇔ {x-y+1=0
{2y-2=0
⇔{x-1+1=0
{y=1
⇔{x=0
{y=1
Vậy MinA=0⇔x=0,y=1
A B C M N
Trong \(\Delta ABC\) có:
\(BC^2=AC^2+AB^2=144+25=169\)
\(\Rightarrow BC=13\left(cm\right)\)
Xét \(\Delta\)ABC có:
MA = MB (gt)
NA=NC (gt)
=> MN là đường trung bình \(\Delta ABC\)
=>\(MN=\dfrac{1}{2}BC=\dfrac{1}{2}.13=6,5\left(cm\right)\)
Lại có: \(AN=\dfrac{1}{2}AC=6\left(cm\right)\)
P/S sai thui :))
chết mịa roài N là trung điểm BC :)) hèn gì thầy lạ :D sorry chán quá chắc 30phut nữa có thằng nhóc láu cá nó vào ns liền rồi nó giải cho :D
17)\(\left(x+y+z\right)^2-4z^2\)
\(=\left(x+y+z-2z\right)\left(x+y+z+2z\right)\)
\(=\left(x+y-z\right)\left(x+y+3z\right)\)
18)\(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
19)\(8x^3-y^3-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2-6xy\right)\)
\(=\left(2x-y\right)\left(4x^2-4xy+y^2\right)\)
\(=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)
20)\(-\frac{1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2\)
\(=-\left(\frac{1}{9}x^2-\frac{1}{3}xy+\frac{1}{4}y^2\right)=-\left(\frac{1}{3}x-\frac{1}{2}y\right)^2\)
21)\(x^4y^4-z^4=\left[\left(xy\right)^2\right]^2-\left(z^2\right)^2\)
\(=\left(x^2y^2-z^2\right)\left(x^2y^2+z^2\right)\)
\(=\left(xy-z\right)\left(xy+z\right)\left(x^2y^2+z^2\right)\)
\(A=(x-y+1)^2+(2y-1)^2+3\ge 3\)
Vậy minA=3 khi \(x=-\dfrac{1}{2},y=\dfrac{1}{2}\)
Bạn viết rõ cho mình dc ko