K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
23 tháng 3 2019

\(\left\{{}\begin{matrix}2x-y=3\\x^2+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x^2+2x-3=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\\left(x+1\right)^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\Rightarrow y=1\\x=-4\Rightarrow y=-11\end{matrix}\right.\)

23 tháng 3 2019

cảm ơn bn nhiều nha

18 tháng 8 2018

\(x^2+2\left(m+1\right)x+m^2+3=0.\)

Ta có:

\(\Delta'=b'^2-ac=\left(m+1\right)^2-1.\left(m+3\right)=m^2+2m+1-m-3=m^2+m-2\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow m^2+m-2\ge0\Leftrightarrow\left(m-1\right)\left(m+2\right)\ge0\Rightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\)

Theo hệ thức Vi-ét ta có:

\(x_1+x_2=-\frac{b}{a}=-\frac{2\left(m+1\right)}{1}=2m-2\)

\(x_1.x_2=\frac{c}{a}=\frac{m+3}{1}=m+3\)

Ta có:

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2.x_1.x_2=\left(2m-2\right)^2-2\left(m+3\right)=4m^2-8m+4-2m-6\)

\(=4m^2-10m-2=\left[\left(2m\right)^2-2.2m.2,5+2,5^2\right]-2,5^2-2=\left(2m-2,5\right)^2-8,25\ge-8,25\)

Vậy MinP= -8,25

Dấu ''='' xảy ra khi \(2m-2,5=0\Leftrightarrow m=1,25\)( thỏa mãn )

6 tháng 7 2016

\(x^3-2x^2-2x+3=0\)

\(\Leftrightarrow x^3-x^2-x^2+x-3x+3=0\)

\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(x-1\right)=0\)

...

15 tháng 6 2015

1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho

b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\)\(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)

=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m

2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb

áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\)\(x1.x2=-1\)

câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha

sửa đề rồi liên hệ để mình làm tiếp nha

 

18 tháng 5 2017

Xét phương trình hoành độ giao điểm:

\(2x^2=2mx-m-2x+2\)

\(\Leftrightarrow2x^2-2\left(m-1\right)x+m-2=0\left(1\right)\)

Xét pt (1) có:

\(\Delta=4\left(m-1\right)^2-4.2.\left(m-2\right)\)

= \(4m^2-16m+20\)

= \(\left(2m-4\right)^2+4\) >0 với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi m

\(\Rightarrow\) 2 đường thẳng luôn cắt nhau tại 2 điểm phân biệt

Áp dụng công thức nghiệm ta có:

\(x_A=\dfrac{2m-2+\sqrt{\Delta}}{4}\Rightarrow y_A=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{16}\)

\(x_B=\dfrac{2m-2-\sqrt{\Delta}}{4}\Rightarrow y_B=\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}\)

Theo đề bài ta có:

\(x_A-y_B=y_A-x_B-1\)

\(\Leftrightarrow\dfrac{2m-2+\sqrt{\Delta}}{4}-\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{4}-\dfrac{2m-2-\sqrt{\Delta}}{4}-1\)

\(\Leftrightarrow4\left(2m-2+\sqrt{\Delta}\right)-2\left(2m-2-\sqrt{\Delta}\right)^2=2\left(2m-2+\sqrt{\Delta}\right)^2-4\left(2m-2-\sqrt{\Delta}\right)-16\)\(\Leftrightarrow48m-16-16m^2-4\Delta=0\)

\(\Leftrightarrow48m-16-16m^2-4\left(4m^2-16m+20\right)=0\)

\(\Leftrightarrow-32m^2+112m-96=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy để 2 đường thẳng cắt nhau tại 2 điểm \(A_{\left(x_A;y_A\right)};B_{\left(x_B;y_B\right)}\) thỏa mãn

\(x_A-y_B=y_A-x_B-1\) thì \(m=2\) hoặc \(m=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:

Để pt có hai nghiệm $x_1,x_2$ thì:

\(\Delta'=4^2-6m>0\Leftrightarrow m< \frac{8}{3}\)

Áp dụng định lý Viete cho pt bậc 2 thì:

\(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=\frac{3m}{2}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=15\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=15\)

\(\Leftrightarrow (-4)^2-3m=15\Leftrightarrow m=\frac{1}{3}\) (thỏa mãn)

Vậy \(m=\frac{1}{3}\)

4 tháng 5 2018

Ta có: \(\Delta'=\)42 -2.3m =16-6m. Để phướng trình có 2 nghiệm, \(\Delta'\ge0\)

<=> 16-6m \(\ge\)0 <=> -6m\(\ge\)-16 <=> m\(\le\)\(\dfrac{8}{3}\)

Ta có : x12 +x22=15 <=> x12+2x1x2+x22-2x1x2= (x1+x2)2- 2x1x2

Theo hệ thức Vi-ét ta có: x1+x2=-4 ; x1x2=\(\dfrac{3m}{2}\)

=> \(\left(-4\right)^2-2.\dfrac{3m}{2}\)=15 <=> 16-3m=15 <=> -3m=-1 <=> m=\(\dfrac{1}{3}\) (thỏa mãn)

Vậy m= \(\dfrac{1}{3}\) thỏa mãn yêu cầu đề bài

6 tháng 7 2020

a) Giải phương trình hoành độ giao điểm với a=2 ta đc

\(x^2-2x-2=0\)

\(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)

với x=...