\(8x^3y^3+27=18y^3\)

\(4x^2y+6x=y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

Nhân cả 2 vế với y vào phương trình (2) ta được

\(\begin{cases} 8(xy)^3+27=18y^3\\ 4(xy)^2+6xy=y^3 \end{cases} \Rightarrow 8(xy)^3+27=18\left[4(xy)^2+6xy\right]\)

Đây là phương trình bậc 3 ẩn xy.

NV
3 tháng 11 2019

Nhận thấy \(x=0\) ; \(y=0\) ko phải nghiệm của hệ

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)\left(4x^2y^2-6xy+9\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)

Chia vế cho vế:

\(\frac{4x^2y^2-6xy+9}{2x}=18y\Rightarrow4x^2y^2-6xy+9=36xy\)

\(\Rightarrow4x^2y^2-42xy+9=0\)

Nghiệm xấu quá, bạn tự giải nốt :(

NV
5 tháng 7 2020

a/ \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-5\right)^2\ge0\\\left(x-y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)^2+\left(y-5\right)^2+\left(x-y+4\right)^2\ge0\)

\(A_{min}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

b/ \(B=x^2y^2-6xy+9+x^2+4x+4-16\)

\(B=\left(xy-3\right)^2+\left(x+2\right)^2-16\ge-16\)

\(B_{min}=-16\) khi \(\left\{{}\begin{matrix}x=-2\\y=-\frac{3}{2}\end{matrix}\right.\)

c/ \(C=x^2+\frac{y^2}{4}+16+xy+8x+4y+\frac{59}{4}y^2-3y+2001\)

\(C=\left(x+\frac{y}{2}+4\right)^2+\frac{59}{4}\left(y-\frac{6}{59}\right)^2+\frac{118050}{59}\ge\frac{118050}{59}\)

\(C_{min}=\frac{118050}{59}\)

d/ \(D=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+36\)

\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)\)

\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]\ge2.3=6\)

\(D_{min}=6\)

e/ \(E=a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3b}{2}+\frac{3b^2}{4}-\frac{3b}{2}+2014-\frac{9}{4}\)

\(=\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2011\ge2011\)

\(E_{min}=2011\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x^3-8x=y(y^2+2)\\ x^2=3(y^2+2)\end{matrix}\right.\)

\(\Rightarrow 3(x^3-8x)=x^2y\)

\(\Leftrightarrow x[3(x^2-8)-xy]=0\)

\(x^2=3y^2+6\geq 6>0\Rightarrow x\neq 0\)

Do đó suy ra \(3(x^2-8)-xy=0\Rightarrow y=\frac{3(x^2-8)}{x}\)

Thay vào pt thứ 2:

\(x^2-3\frac{9(x^2-8)^2}{x^2}=6\)

Đặt $x^2=t$ thì \(t^2-27(t-8)^2=6t\)

\(\Rightarrow t=9; t=\frac{96}{13}\)

Nếu \(t=9\Rightarrow x=\pm 3\)

\(x=3\rightarrow y=1; x=-3\rightarrow y=-1\)

Nếu \(t=\frac{96}{13}\Rightarrow x=\pm \sqrt{\frac{96}{13}}\)

\(x=\sqrt{\frac{96}{13}}\rightarrow y=-\sqrt{\frac{6}{13}}; x=-\sqrt{\frac{96}{13}}\rightarrow y=\sqrt{\frac{6}{13}}\)

29 tháng 8 2018

\(\left\{{}\begin{matrix}x^3-8x=y^3+2y\left(1\right)\\x^2-3y^2=6\left(2\right)\end{matrix}\right.\)

Dễ thây y = 0 không phải nghiệm của hệ:

\(\Rightarrow3\left(1\right)-y\left(2\right)=x\left(3x^2-xy-24\right)=0\)

Tơi đây kêt hợp vơi (2) xẽ co hệ đẳng câp rồi nên làm nôt nha.

5 tháng 1 2016

Hệ\(\Leftrightarrow\begin{cases} x^3-y^3=8x+2y\\ x^2-3y^2=6 \end{cases}\)

Dễ thấy x=0 ko thỏa mãn hệ. Xét x khác 0, đặt y=kx thì

\(\begin{cases} x^3(1-k^3)=x(8+2k)\\ x^2(1-3k^2)=6 \end{cases}\Rightarrow 6(1-k^3)=(8+2k)(1-3k^2)\)

Từ đó tìm đc k và suy ra x,y nhé!

4 tháng 1 2016

gianroi khó trình bày