Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
Điều kiện: \(x,y\le\frac{1}{2}\Rightarrow2xy\le\frac{1}{2}\)
Ta có:
\(\left(\frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}\right)^2\le2\left(\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\right)\)
\(\le\frac{4}{1+2xy}\)
\(\Rightarrow x=y\)
Làm nốt
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le\frac{1}{2}\\0\le y\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow xy\le\frac{1}{4}\)
Từ pt đầu: \(\Leftrightarrow\frac{4}{1+2xy}=\left(\frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}\right)^2\le2\left(\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\right)\)
\(\Leftrightarrow\frac{2}{1+2xy}\le\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\)
\(\Leftrightarrow\frac{1}{1+2x^2}+\frac{1}{1+2y^2}-\frac{2}{1+2xy}\ge0\)
\(\Leftrightarrow\frac{2\left(2xy-1\right)\left(x-y\right)^2}{\left(1+2x^2\right)\left(1+2y^2\right)\left(1+2xy\right)}\ge0\) (2)
Do \(xy\le\frac{1}{4}< \frac{1}{2}\Rightarrow2xy-1< 0\)
\(\Rightarrow\left(2\right)\) xảy ra khi và chỉ khi \(x-y=0\Leftrightarrow x=y\)
Thế vào pt dưới:
\(2\sqrt{x\left(1-2x\right)}=\frac{2}{9}\Leftrightarrow x\left(1-2x\right)=\frac{1}{81}\Leftrightarrow...\)
khó thế
Bạn học lớp mấy z, khó quá