K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow x-y=y-z=z-x=0\)\(\Rightarrow x=y=z\)

\(\Rightarrow x^{2010}+y^{2010}+z^{2010}=3x^{2010}=3^{2010}\)

\(\Rightarrow x^{2010}=\dfrac{3^{2010}}{3}=3^{2009}\Rightarrow x=\sqrt[2010]{3^{2009}}\)

\(\Rightarrow x=y=z=\sqrt[2010]{3^{2009}}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

PT (1)

\(\Leftrightarrow x^2+y^2+z^2-(xy+yz+xz)=0\)

\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Thấy rằng \((x-y)^2; (y-z)^2; (z-x)^2\geq 0\forall x,y,z\in\mathbb{R}\)

\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} (x-y)^2=0\\ (y-z)^2=0\\ (z-x)^2=0\end{matrix}\right.\Leftrightarrow x=y=z\)

Thay vào PT (2)

\(\Leftrightarrow x^{2010}+x^{2010}+x^{2010}=3^{2010}\)

\(\Leftrightarrow 3.x^{2010}=3^{2010}\Leftrightarrow x^{2010}=3^{2009}\)

\(\Leftrightarrow x=\sqrt[2010]{3^{2009}}\)

Vậy \((x,y,z)=(\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}})\)

22 tháng 11 2017

mk nghĩ đề là \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

12 tháng 3 2017

do vai trò của x, y, z là như nhau nên ta giả sử x>y>z
=>\(2x^{2010}>2y^{2010}\)
=>\(y^6+z^6>z^6+x^6\Leftrightarrow y^6>x^6\) ,mà thím này mâu thuẫn với giả sử => điều giả sử sai
=> x=y=z
ngang đây thì dễ oy nha bn :)

11 tháng 3 2018

Không đồng tình với bạn, vì bạn chưa xét dựa trên trường hợp trái dấu (VD: x=2, y=-6) nên bước đầu của bạn: sai.

1 tháng 7 2020

Ta có: x2 + y2 + z2 = xy + yz + zx

<=> [(x - y)2 + (y - z)2 + (z - x)2] . 1/2 = 0

<=> x = y = z

Thay vào pt thứ 2...

25 tháng 4 2020

Natsu Dragneel 2005 pha gần cuối phải là:

\(3.x^{2015}=3.3^{2015}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)

ms đúng nha!

25 tháng 4 2020

AD BĐT cô - si cho ba số không âm x2 ; y2 ; z2 , ta có :

x2 + y2 ≥ 2√x2y2 = 2xy ( dấu bằng xảy ra khi x = y )

Tương tự : y2 + z2 ≥ 2yz ( dấu ... khi y = x )

z2 + x2 ≥ 2zx ( ... z = x )

⇒ 2 ( x2 + y2 + z2 ) ≥ 2 ( xy + yz + zx )

⇔ x2 + y2 + z2 ≥ xy + yz + zx

Dấu = xảy ra khi x = y = z

⇒ x2015 + y2015 + z2015 = 3x2015 = 32016

⇔ 32015. x = 32015. 3 ⇒ x = 3

⇒ x = y = z = 3

22 tháng 8 2017

Ta xét:

\(\left(x-2010\right)\left(y-2010\right)\left(z-201\right)\)

\(=2010^2\left(x+y+z\right)-2010\left(xy+yz+zx\right)+xyz-2010^3\)

\(=2010\left[2010\left(x+y+z\right)-\left(xy+yz+zx\right)\right]>0\)

Vậy trong 3 số x, y, z có 1 số lớn hơn 2010 hoặc cả 3 số đều lớn hơn 2010.

Mà \(xyz=2010^3\)nên chỉ có trường hợp trong ba số đó có đúng 1 số lơn hơn 2010.

Ta xét:

(x−2010)(y−2010)(z−201)

=20102(x+y+z)−2010(xy+yz+zx)+xyz−20103

=2010[2010(x+y+z)−(xy+yz+zx)]>0

Vậy trong 3 số x, y, z có 1 số lớn hơn 2010 hoặc cả 3 số đều lớn hơn 2010.

Mà xyz=20103nên chỉ có trường hợp trong ba số đó có đúng 1 số lơn hơn 2010.

Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng

11 tháng 1 2019

hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )

Cộng từng vế của các pt lại với nhau , ta có :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)

\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)

\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)

\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)

11 tháng 1 2019

hình như kết quả sai r đó bạn :)

24 tháng 9 2018

\(\left\{{}\begin{matrix}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-x-y-1=-2\\yz-y-z-1=4\\zx-z-x-1=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=-2\\\left(y-1\right)\left(z-1\right)=4\\\left(z-1\right)\left(x-1\right)=1\end{matrix}\right.\)

24 tháng 9 2018

Bạn biến đổi sai rồi