K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

\(\left\{{}\begin{matrix}x^2+2x-2y^2=0\\y^2+2y-2x^2=0\end{matrix}\right.\)\(\left(1\right)-\left(2\right)\Rightarrow x^2+2x-2y^2-y^2-2y+2x^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x+3y+2\right)=0\Leftrightarrow\left(x-y\right)3\left(x+y+\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y+\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\left(2\right)\\x=-\dfrac{2}{3}-y\left(3\right)\end{matrix}\right.\)

\(thế\left(2\right)và\left(3\right)lên-hệ-pt-rồi-giải\)

 

 

 

 

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$

AH
Akai Haruma
Giáo viên
23 tháng 12 2019

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$

16 tháng 8 2016

1)Thấy: x=0;y=0 không phải là nghiệm của hệ.

\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)

Trừ vế theo vế hai phương trình,đc:

\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)

\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:

\(26x^4-426x^2-1728=0\)

\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé oaoa

 

16 tháng 8 2016

lần sau bn đăng ít 1 thôi nhé

3 tháng 12 2019

từ pt trên tính x theo y hoặc y theo x r thay vào pt dưới

NV
8 tháng 5 2019

Bạn ghi đề sai, hoặc các đáp án đều sai, ko có đường tròn nào đi qua O(0;0) hết

8 tháng 5 2019

đề ko sai nhé bạn

18 tháng 3 2016

(C): x+ y2 + 2x + 2y - 1= 0

     => (x+1)2 +(y+1)2 =3   (1)

(C'): x2 + y2 -2x + 2y -7 =0

     => (x-1)2 +(y+1)2 =9   (2)

(1)(2) => (x-1)2 -(x+1)2 =6

         <=> -4x =6  suy ra x= \(\frac{-3}{2}\)

Thay x vào (2) ta có :   (y+1)2 = \(\frac{11}{4}\) suy ra y = -1 + \(\frac{\sqrt{11}}{2}\)   hoặc y= -1- \(\frac{\sqrt{11}}{2}\)

NV
13 tháng 2 2020

ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x^3+x^2y=3\\2y^3+xy^2=3\end{matrix}\right.\)

\(\Rightarrow2\left(x^3-y^3\right)+xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2y^2+2xy\right)+xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2y^2+3xy=0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2x^2+2y^2+3xy=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=y\\2\left(x+\frac{3}{4}y\right)^2+\frac{7y^2}{8}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=y=0\left(ktm\right)\end{matrix}\right.\)

Với \(x=y\) thay vào pt đầu: \(3x^3=3\Rightarrow x=1\Rightarrow y=1\)

a: |x-1|+|2y-1|=0

=>x-1=0 và 2y-1=0

=>x=1 và y=1/2

b: |1-2x|+|3-2y|=0

=>1-2x=0và 3-2y=0

=>x=1/2 và y=3/2

c: \(\left(x-1\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

NV
13 tháng 3 2020

a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)

b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)

NV
13 tháng 3 2020

d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)

Đặt \(\left|2x-5\right|=t\ge0\)

\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)