Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3=3y^2-3y+1=3\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(\Rightarrow x\ge\dfrac{1}{\sqrt[3]{4}}>\dfrac{1}{2}\)
Tương tự ta có \(y;z>\dfrac{1}{2}\)
\(\Rightarrow x+y-1>0;y+z-1>0;z+x-1>0\)
TH1: \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow3y^2-3y+1\ge3z^2-3z+1\)
\(\Rightarrow y^2-z^2-y+z\ge0\Rightarrow\left(y-z\right)\left(y+z+1\right)\ge0\)
\(\Rightarrow y-z\ge0\Rightarrow y\ge z\Rightarrow x\ge z\) (1)
Cũng do \(y\ge z\Rightarrow y^3\ge z^3\)
\(\Rightarrow3z^2-3z+1\ge3x^2-3x+1\Rightarrow z^2-x^2-z+x\ge0\)
\(\Rightarrow\left(z-x\right)\left(z+x+1\right)\ge0\Rightarrow z\ge x\) (2)
Từ (1);(2) \(\Rightarrow x=y=z\)
TH2: \(x\le y\), hoàn toàn tương tự ta cũng chứng minh được \(x=y=z\)
Thay vào hệ ban đầu:
\(\left\{{}\begin{matrix}x^3-3x^2+3x=1\\y^3-3y^2+3y=1\\z^3-3z^2+3z=1\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)
Bài 1:
Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
\(P=\frac{1}{2a+b+c}+\frac{1}{a+b+2c}+\frac{1}{a+2b+c}\)
\(P=\frac{1}{a+a+b+c}+\frac{1}{a+b+c+c}+\frac{1}{a+b+b+c}\)
\(\Rightarrow P\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{6}{4}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{4}\)
Bài 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\\left(x+y\right)\left(x^2+y^2-xy\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\5\left(x+y\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow10y=0\Rightarrow y=0\)
Thay vào pt đầu: \(x^2=5\Rightarrow x=\pm\sqrt{5}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\sqrt{5};0\right);\left(-\sqrt{5};0\right)\)
Không mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\)
\(\Rightarrow z=3x^3+2x^2+x\le3y^3+2y^2+y\)
\(\Rightarrow z\le x\)
\(\Rightarrow z=x\)
\(\Rightarrow x=y=z\)
\(\Rightarrow x=3y^3+2x^2+x\Rightarrow x^2\left(3x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\end{matrix}\right.\)