\(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Xét hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\left(1\right)\\1+x^2y^2=5x^2\left(2\right)\end{matrix}\right.\)

Từ (2) => x # 0

Chia 2 vế của mỗi PT cho x2 ta được \(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=6\\\dfrac{1}{x^2}+y^2=5\end{matrix}\right.\)

Đặt \(a=\dfrac{1}{x}\) ta có \(\left\{{}\begin{matrix}a^2y+ay^2=6\\a^2+y^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay\left(a+y\right)=6\\\left(a+y\right)^2-2ay=5\end{matrix}\right.\)

Đặt t = a + y, z =ay (t2 \(\ge\) 4z)

Ta có: \(\left\{{}\begin{matrix}tz=6\\t^2-2z=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{t^2-5}{2}\\t^3-5t-12=0\left(3\right)\end{matrix}\right.\)

(3) <=> (t - 3)(t2 + 3t + 4) = 0 <=> t = 3 => z = 2

Vậy \(\left\{{}\begin{matrix}a+y=3\\a.y=2\end{matrix}\right.\)

\(\Leftrightarrow\left(a=1;y=2\right)\) hoặc \(\left(a=2;y=1\right)\)

Hệ thức có hai nghiệm (x = 1; y = 2), (x = \(\dfrac{1}{2}\) ; x = 1)

AH
Akai Haruma
Giáo viên
27 tháng 11 2017

Lời giải:

Nếu \(x=0\Rightarrow x^2y^2=-1\) (vô lý)

Nếu \(y=0\Rightarrow 6x^2=0\Leftrightarrow x=0\).Thay vào pt (2) thì \(1=5x^2=0\) (vô lý)

Vậy \(x,y\neq 0\)

PT tương đương: \(\left\{\begin{matrix} y(1+xy)=6x^2\\ (xy+1)^2-2xy=5x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy+1=\frac{6x^2}{y}\\ (xy+1)^2-2xy=5x^2\end{matrix}\right.\)

\(\Rightarrow \left(\frac{6x^2}{y}\right)^2-2xy=5x^2\)

\(\Leftrightarrow \frac{36x^3}{y^2}-2y=5x\) (do \(x\neq 0\) )

\(\Leftrightarrow 36x^3-2y^3=5xy^2\)

Đặt \(x=ty\Rightarrow 36t^3y^3-2y^3-5ty^3=0\)

\(\Leftrightarrow 36t^3-2-5t=0\) (do \(y\neq 0\) )

\(\Leftrightarrow (2t-1)(18t^2+9t+2)=0\)

Thấy rằng \(18t^2+9t+2=18(t+\frac{1}{4})^2+\frac{7}{8}>0\) nên \(2t-1=0\)

\(\Leftrightarrow t=\frac{1}{2}\Leftrightarrow x=\frac{y}{2}\Leftrightarrow 2x=y\)

Thay vào PT (1)

\(2x+4x^3=6x^2\Leftrightarrow 1+2x^2-3x=0\) (do x khác 0)

\(\Leftrightarrow (2x-1)(x-1)=0\)

Nếu \(x=\frac{1}{2}\Rightarrow y=1\)

Nếu \(x=1\Rightarrow y=2\)

Thử lại thấy thỏa mãn.

Vậy \((x,y)\in \left\{(\frac{1}{2};1); (1;2)\right\}\)

24 tháng 2 2018

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)