K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ

18 tháng 10 2017

Xét hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\left(1\right)\\1+x^2y^2=5x^2\left(2\right)\end{matrix}\right.\)

Từ (2) => x # 0

Chia 2 vế của mỗi PT cho x2 ta được \(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=6\\\dfrac{1}{x^2}+y^2=5\end{matrix}\right.\)

Đặt \(a=\dfrac{1}{x}\) ta có \(\left\{{}\begin{matrix}a^2y+ay^2=6\\a^2+y^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay\left(a+y\right)=6\\\left(a+y\right)^2-2ay=5\end{matrix}\right.\)

Đặt t = a + y, z =ay (t2 \(\ge\) 4z)

Ta có: \(\left\{{}\begin{matrix}tz=6\\t^2-2z=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{t^2-5}{2}\\t^3-5t-12=0\left(3\right)\end{matrix}\right.\)

(3) <=> (t - 3)(t2 + 3t + 4) = 0 <=> t = 3 => z = 2

Vậy \(\left\{{}\begin{matrix}a+y=3\\a.y=2\end{matrix}\right.\)

\(\Leftrightarrow\left(a=1;y=2\right)\) hoặc \(\left(a=2;y=1\right)\)

Hệ thức có hai nghiệm (x = 1; y = 2), (x = \(\dfrac{1}{2}\) ; x = 1)

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)

NV
18 tháng 6 2020

a/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-3\\y=b^2+1\end{matrix}\right.\)

Ta được: \(\left\{{}\begin{matrix}a-b=3\\a+b^2+1-2\left(a^2-3\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=a-3\\a+b^2-2a^2+6=0\end{matrix}\right.\) (\(b\ge0\Rightarrow\)\(a\ge3\))

\(\Rightarrow a+\left(a-3\right)^2-2a^2+6=0\)

\(\Leftrightarrow-a^2-5a+15=0\Rightarrow\left[{}\begin{matrix}a=\frac{-5+\sqrt{85}}{2}< 3\left(l\right)\\a=\frac{-5-\sqrt{85}}{2}< 3\left(l\right)\end{matrix}\right.\)

Vậy hệ đã cho vô nghiệm

b/ Đề này ko giải được (nghiệm phức dài 3 trang giấy), chỉ giải được khi hệ là \(\left\{{}\begin{matrix}1+\left(xy\right)^3=19x^3\\xy^2+y=-6x^2\end{matrix}\right.\)

Khi đó nhận thấy \(x=0\) ko phải nghiệm, hệ tương đương:

\(\left\{{}\begin{matrix}\left(xy+1\right)\left(x^2y^2-xy+1\right)=19x^3\\y\left(xy+1\right)=-6x^2\end{matrix}\right.\)

\(\Rightarrow\frac{x^2y^2-xy+1}{y}=\frac{19x^3}{-6x^2}=\frac{-19x}{6}\)

\(\Leftrightarrow6x^2y^2-6xy+6=-19xy\)

\(\Leftrightarrow6x^2y^2+13xy+6=0\Rightarrow\left[{}\begin{matrix}xy=-\frac{3}{2}\\xy=-\frac{2}{3}\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}19x^2=1+\left(-\frac{2}{3}\right)^3\\19x^2=1+\left(-\frac{3}{2}\right)^3\end{matrix}\right.\) \(\Rightarrow...\)

18 tháng 6 2020

thank anh

NV
20 tháng 3 2019

Cộng vế với vế:

\(x^2+2xy+y^2+3x+3y-4=0\)

\(\Leftrightarrow\left(x+y\right)^2+3\left(x+y\right)-4=0\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)

TH1: \(x+y=1\Rightarrow y=1-x\) thay vào pt dưới:

\(x\left(1-x\right)+x+2\left(1-x\right)-1=0\)

\(\Leftrightarrow-x^2+1\Rightarrow\left[{}\begin{matrix}x=1;y=0\\x=-1;y=2\end{matrix}\right.\)

TH2: \(x+y=-4\Rightarrow y=-4-x\)

\(x\left(-4-x\right)+x+2\left(-4-x\right)-1=0\)

\(\Leftrightarrow x^2+5x+9=0\) (vô nghiệm)