K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)

5 tháng 5 2017

a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).

17 tháng 5 2017

a) \(\left\{{}\begin{matrix}x+2y-3z=2\\2x+7y+z=5\\-3x+3y-2z=-7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2y-3z=2\\3y+7z=1\\-32z=-4\end{matrix}\right.\)

Đáp số : \(\left(x,y,z\right)=\left(\dfrac{55}{24},\dfrac{1}{24},\dfrac{1}{8}\right)\)

b) \(\left\{{}\begin{matrix}-x-3y+4z=3\\3x+4y-2z=5\\2x+y+2z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\-5y+10z=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\0y+0z=-4\end{matrix}\right.\)

Phương trình cuối vô nghiệm, suy ra hệ phương trình đã cho vô nghiệm

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

4 tháng 5 2017

b) Đặt \(\left\{{}\begin{matrix}x+y+z=7\left(1\right)\\3x-2y+2z=5\left(2\right)\\4x-y+3z=10\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)+\left(2\right)\) ta có: \(4x-y+3z=12\). (4)
Từ (3) và (4): \(\left\{{}\begin{matrix}4x-y+3z=12\\4x-y+3z=10\end{matrix}\right.\) (vô nghiệm).
Vậy hệ phương trình vô nghiệm.

30 tháng 3 2017

a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)

\(x=\dfrac{2}{41}\) ; \(y=\dfrac{-48}{41}\)

b. \(\left\{{}\begin{matrix}\text{−2x+3y=5}\\5x+2y=4\end{matrix}\right.\)

\(x=\dfrac{2}{19};y=\dfrac{33}{19}\)

c.\(\left\{{}\begin{matrix}\text{2x−3y+4z=−5}\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)

\(x=\dfrac{22}{101};y=\dfrac{131}{101};z=\dfrac{-39}{101}\)

d. \(\left\{{}\begin{matrix}\text{− x + 2 y − 3 z = 2}\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)

\(x=-4;y=\dfrac{11}{7};z=\dfrac{12}{7}\)

2 tháng 4 2017

a)x=0,05 ; y=-1,17

b.x=0,11 ; y=1,74

c.x=0,22 ;y=1,29 z=-0.39

d.x=-4 y=1,57 z=1,71

NV
8 tháng 3 2020

a/ \(\Leftrightarrow\left\{{}\begin{matrix}15x-20y=10\\-15x-9y=12\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-29y=22\\x=\frac{4y+2}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-\frac{22}{29}\\x=-\frac{10}{29}\end{matrix}\right.\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y+2z=4\\-4y+9z=6\\8y+z=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y+2z=4\\-4y+9z=6\\19z=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z=\frac{16}{19}\\y=\frac{15}{38}\\x=\frac{7}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+4z=8\\2x-y+3z=6\\2x-6y+8z=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\3y+z=2\\8y-4z=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\12y+4z=8\\8y-4z=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\20y=-2\\3y+z=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\y=-\dfrac{1}{10}\\z=2-3y=2+\dfrac{3}{10}=\dfrac{23}{10}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{10}\\z=\dfrac{23}{10}\end{matrix}\right.\)

=>4x+2y-6z=4 và 2x+2y+6z=4 và 3x-2y+z=1

=>7x-5z=5 và 5x+7z=5 và 2x+y-3z=2

=>x=30/37 và z=5/37 và y=2-2x+3z=29/37

13 tháng 9 2023

anh làm chi tiết đc ko ạ