K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

<=>\(\hept{\begin{cases}4x^2+2mx=2\\mx^2-x=-2\end{cases}}\)<=>\(\hept{\begin{cases}\left(4+m\right)x^2+\left(2m-1\right)x=0\\mx^2-x=-2\end{cases}}\)<=>\(\hept{\begin{cases}x\left(\left(m+4\right)x+2m-1\right)=0\\mx^2-x=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=0\\mx^2-x=-2\end{cases}}\)(vô nghiệm) hoặc \(\hept{\begin{cases}x=\frac{1-2m}{m+4}\\mx^2-x=-2\end{cases}}\)(điều kiện m\(\ne-4\)) <=>m(\(\frac{1-2m}{m+4}\))2-\(\frac{1-2m}{m+4}\)=-2 <=> m(1-2m)2-(1-2m)(m+4)=-2(m+4)2 <=> 4m3-4m2+m-m+2m2-4+8m=-2m2-16m-32 <=> 4m3+24m+28=0

<=> (m+1)(4m2-4m+28)=0 <=>m+1=0 (vì 4m2-4m+28=(2m-1)2+27>0) <=> m=-1 (thỏa mãn m\(\ne-4\))

Vậy m=-1

22 tháng 8 2020

Để phương trình thứ nhất có nghiệm thì :

 \(m^2+4.2\ge0\Leftrightarrow m^2+8\ge0\)*đúng với mọi m*

Để phương trình thứ hai có nghiệm thì :

\(1-4.2.m\ge0\Leftrightarrow1-8m\ge0\Leftrightarrow m\le\frac{1}{8}\)

Vậy với \(m\le\frac{1}{8}\)thì phương trình có nghiệm

23 tháng 8 2020

Mình tìm được m=-1

Đặt \(x^2=y\ge0\)Khi đó hệ trở thành \(\hept{\begin{cases}mx+2y=1\\-x+my=-2\end{cases}}\)

Hệ luôn có nghiệm \(\hept{\begin{cases}x=\frac{m+4}{m^2+2}\\y=\frac{1-2m}{m^2+2}\ge0\left(m\le\frac{1}{2}\right)\end{cases}}\)

Ta có \(x^2=y\Leftrightarrow\left(\frac{m+4}{m^2+2}\right)^2=\frac{1-2m}{m^2+2}\)

\(\Leftrightarrow\left(m+1\right)\left(m^2-m+7\right)=0\Leftrightarrow m=-1\)

5 tháng 2 2018

4.

(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1

<=> x-m2x=-2m2+m+1

<=> x(1-m)(1+m)=-(m-1)(1+2m)

với m=-1 thì pt vô nghiệm

với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn

với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)

=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)

để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)

=> m+1\(\in\)Ư(1)={1;-1}

=> m\(\in\){0;-2} mà m nguyên âm nên m=-2 

vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề

8 tháng 2 2018

Phương trình Câu 3 là \(x^4-2x^2+m-1\) ạ hihi

11 tháng 2 2017

bạn à bạn k cho mình trước rồi mình sẽ trả lời cho.Hứa mình học CHUYÊN TOÁN mà,đừng lo nha.Hứa đó

12 tháng 2 2017

cái này  mk làm đc nhưng nó hơi dài b 

24 tháng 1 2020

\(b,\hept{\begin{cases}x-my=3\left(1\right)\\mx-4y=m+4\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Rightarrow x=my+3\)

Thay \(x\)vào \(\left(2\right):\left(m^2-4\right)y=4-2m\left(#\right)\)

- Nếu \(m^2-4=0\Leftrightarrow\left(m-2\right)\left(m+2\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

Xét từng giá trị của m sau:

  • \(m=2:\left(#\right)0y=0\)(Luôn đúng)

Hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\inℝ\end{cases}}\)

  • \(m=-2\)\(\left(#\right)\Leftrightarrow0y=8\left(vn\right)\)

Vậy hệ vô nghiệm

- Nếu \(m\ne\pm2\)ta có: \(\left(#\right)\Leftrightarrow y=\frac{4-2m}{m^2-4}\Leftrightarrow y=-\frac{2}{m+2}\)

Ta tìm được \(x=\frac{m+6}{m+2}\)

Hệ có nghiệm: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)

Vậy: \(m=2\)thì hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\in R\end{cases}}\)

\(m=-2\)hệ vô nghiệm

\(m\ne\pm2\)hệ có nghiệm duy nhất: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)

19 tháng 3 2020

https://olm.vn/hoi-dap/detail/247392111572.html

19 tháng 2 2017

làm ơn giúp mk vs ạ