K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

AH
Akai Haruma
Giáo viên
14 tháng 11 2017

Lời giải:

PT(1): \(x^3-2x^2y+x=y^3-2xy^2+y\)

\(\Leftrightarrow (x^3-y^3)-2xy(x-y)+(x-y)=0\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2)-2xy(x-y)+(x-y)=0\)

\(\Leftrightarrow (x-y)(x^2-xy+y^2+1)=0\)

Ta thấy:

\(x^2-xy+y^2+1=(x-\frac{y}{2})^2+\frac{3y^2}{4}+1\geq 1>0\) với mọi số thực x,y

Do đó: \(x-y=0\Leftrightarrow x=y\)

Thay vào PT(2):

\(\sqrt{y-1}+\sqrt{5-y}=-y^2+2y+1\)

Xét: \(\text{VT}^2=4+2\sqrt{(y-1)(5-y)}\geq 4\) nên \(\text{VT}\geq 2\) hoặc \(\text{VT}\leq -2\). Mà vế trái luôn không âm nên:

\(\Rightarrow \text{VT}\geq 2\)

Xét \(\text{VP}=-(y^2-2y+1)+2=2-(y-1)^2\leq 2\forall y\in\mathbb{R}\)

\(\text{VT}=\text{VP}\Leftrightarrow \text{VT}=\text{VP}=2\)

Dấu bằng xảy ra khi \(y=1\)

Vậy \((x,y)=(1,1)\)

6 tháng 2 2020

Ta lấy pt thứ 2 cộng 2 lần với pt thứ nhất ta được:

\(x^2+2xy+y^2+4x-4y+4=0\)

Hay: \(\left(x-y+2\right)^2=0\)

Ta suy ra \(y=x+2\). Thay trở lại pt thứ nhất của hệ ta được:

\(x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)

Trương đương với: \(x^2+5x+1=0\)

Vì vậy có nghiệm: \(x=\frac{-5\pm\sqrt{21}}{2}\).

Do đó: \(y=x+2=\frac{-1\pm\sqrt{21}}{2}\)

Vậy hệ pt đã cho có 2 nghiệm \(\left(x,y\right)=\left(\frac{-5+\sqrt{21}}{2};\frac{-1+\sqrt{21}}{2}\right);\left(\frac{-5-\sqrt{21}}{2};\frac{-1-\sqrt{21}}{2}\right)\)

NV
20 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2-2xy+4\left(x-y\right)+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)

\(\Leftrightarrow\left(x-y+2\right)^2=0\)

\(\Rightarrow y=x+2\)

\(\Rightarrow x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)

\(\Leftrightarrow...\)

NV
30 tháng 5 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(\Leftrightarrow2x^3=x^3+y^3\)

\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)

Thay vào pt đầu:

\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)

NV
30 tháng 5 2020

a/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với

Theo Viet đảo, a và b là nghiệm của:

\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)