K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

Bạn ơi ! Đề bài đâu ạ ! Có mỗi chữ giải hệ phương trình à !

29 tháng 11 2019

ko có đề bài à

NV
11 tháng 11 2018

Biến đổi pt đầu:

\(2x^2-2xy-xy+y^2-\left(x-y\right)=0\Leftrightarrow2x\left(x-y\right)-y\left(x-y\right)-\left(x-y\right)=0\)\(\Leftrightarrow\left(x-y\right)\left(2x-y-1\right)=0\Rightarrow\left[{}\begin{matrix}x-y=0\\2x-y-1=0\end{matrix}\right.\)

Nếu x-y=0 hay x=y, thay vào pt sau:

\(2x^2-y^2=1\Leftrightarrow2x^2-x^2=1\Rightarrow\left[{}\begin{matrix}x=1;y=1\\x=-1;y=-1\end{matrix}\right.\)

Nếu \(2x-y-1=0\Leftrightarrow y=2x-1\) thay vào pt sau ta được:

\(2x^2-\left(2x-1\right)^2=1\Leftrightarrow-2x^2+4x-2=0\Rightarrow x=1;y=1\)

Vậy hệ đã cho có 2 cặp nghiệm: {x;y}={-1;-1} hoặc {x;y}={1;1}

30 tháng 11 2020

hello bạn

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Lời giải:
Lấy PT(1) cộng PT(2) thu được:

\(2x^3-x^2-2xy-3xy^2-y^2-y^3-1=0\)

\(\Leftrightarrow (2x^3-3xy^2-y^3)-(x^2+2xy+y^2)-1=0\)

\(\Leftrightarrow [2x^2(x+y)-2xy(x+y)-y^2(x+y)]-(x+y)^2-1=0\)

\(\Leftrightarrow (2x^2-2xy-y^2)(x+y)-(x+y)^2-1=0\)

\(\Leftrightarrow 2(x+y)-(x+y)^2-1=0\)

\(\Leftrightarrow -(x+y-1)^2=0\Rightarrow x+y=1\Rightarrow y=1-x\)

Thay vào PT(1) ta có:

\(2x^2-2x(1-x)-(1-x)^2=2\)

\(\Leftrightarrow 3x^2-3=0\Rightarrow x=\pm 1\)

\(x=1\Rightarrow y=0; x=-1\Rightarrow y=2\) (thỏa mãn)

Vậy $(x,y)=(1,0); (-1,2)$

NV
3 tháng 11 2019

ĐKXĐ: ....

Đặt \(\sqrt{y+1}=a\Rightarrow y=a^2-1\)

\(\left\{{}\begin{matrix}x^2a-2x\left(a^2-1\right)-2x=1\\x^3-3x-3x\left(a^2-1\right)=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2a-2a^2x=1\\x^3-3xa^2=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(ax-2a^2\right)=1\\x\left(x^2-3a^2\right)=6\end{matrix}\right.\)

\(\Rightarrow\frac{ax-2a^2}{x^2-3a^2}=\frac{1}{6}\Rightarrow6ax-12a^2=x^2-3a^2\)

\(\Leftrightarrow x^2-6ax+9a^2=0\)

\(\Leftrightarrow\left(x-3a\right)^2=0\Rightarrow x=3a\)

\(\Rightarrow x=3\sqrt{y+1}\Rightarrow y=\frac{x^2-9}{9}\) (\(x>0\))

\(\Rightarrow x^3-3x-\frac{3x\left(x^2-9\right)}{9}=6\)

11 tháng 11 2018

\(\left\{{}\begin{matrix}2x^2+y^2-3xy=x-y\\-y^2+2x^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y-1\right)=0\\2x^2-y^2=1\left(2\right)\end{matrix}\right.\)

Với \(x=y\)

\(pt\left(2\right)\Leftrightarrow2y^2-y^2=1\Leftrightarrow\left(y-1\right)\left(y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Với \(y=2x-1\)

\(pt\left(2\right)\Leftrightarrow2x^2-\left(2x-1\right)^2=1\Leftrightarrow-2\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\Leftrightarrow y=1\)

Vậy \(\left[{}\begin{matrix}\left(x;y\right)=\left(-1;-1\right)\\\left(x;y\right)=\left(1;1\right)\end{matrix}\right.\)