K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

cậu cứ nhân 5 vào phương trình (2)

cộng 2 phương trình lại cậu sẽ ra được x+y-1=2

thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13

giải hệ rồi tìm được x và y

30 tháng 11 2016

\(a,\hept{\begin{cases}\frac{x}{3}-\frac{y}{4}=2\\\frac{2x}{5}+y=18\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}\left(18-\frac{2}{5}x\right)=2\\y=18-\frac{2}{5}x\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{9}{2}+\frac{1}{10}x=2\\y=18-\frac{2}{5}x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{13}{30}x=\frac{13}{2}\\y=18-\frac{2}{5}x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=15\\y=18-\frac{2}{5}.15\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)

\(b,\hept{\begin{cases}\frac{3}{4}x+\frac{2}{5}y=2,3\\x-\frac{3y}{5}=0,8\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\left(0,8+\frac{3}{5}y\right)+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}0,6+\frac{9}{20}y+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{17}{20}y=1,7\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2\\x=0,8+\frac{3}{5}.2\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}}\)

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

14 tháng 11 2019

1.

\(ĐK:x\ne0\)

HPT

\(\Leftrightarrow\hept{\begin{cases}2x\left(x+y\right)-3x+1=0\\3x\left(x+y\right)-x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x\left(x+y\right)-\frac{9}{2}x+\frac{3}{2}=0\left(1\right)\\3x\left(x+y\right)-x-2=0\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\frac{7}{2}x=\frac{7}{2}\)

\(\Leftrightarrow x=1\left(3\right)\)

\(\left(1\right),\left(3\right)\Rightarrow3\left(1+y\right)-3=0\)

\(\Leftrightarrow y=0\)

Vay nghiem cua HPT la \(\left(1;0\right)\)

12 tháng 2 2019

Hpt cho tương đương:

\(\hept{\begin{cases}xy-x-y+1=6\\\frac{1}{\left(x^2-2x+1\right)-1}+\frac{1}{\left(y^2-2y+1\right)-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=6\\\frac{1}{\left(x-1\right)^2-1}+\frac{1}{\left(y-1\right)^2-1}=\frac{2}{3}\end{cases}}}\)

Đặt \(x-1=a,y-1=b\)(dễ thấy a,b khác 0). Khi đó hệ trở thành:

\(\hept{\begin{cases}ab=6\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{6}{a}\\\frac{1}{a^2-1}+\frac{1}{\frac{36}{a^2}-1}=\frac{2}{3}\left(1\right)\end{cases}}}\)

Giải (1) \(\Leftrightarrow\frac{1}{a^2-1}+\frac{a^2}{36-a^2}=\frac{2}{3}\Leftrightarrow\frac{3\left(36-a^2\right)+3a^2\left(a^2-1\right)}{3\left(a^2-1\right)\left(36-a^2\right)}=\frac{2\left(a^2-1\right)\left(36-a^2\right)}{3\left(a^2-1\right)\left(36-a^2\right)}\)

\(\Rightarrow108-3a^2+3a^4-3a^2=74a^2-2a^4-72\)

\(\Leftrightarrow a^4-16a^2+36=0\Leftrightarrow\left(a^2-8\right)^2=28\Leftrightarrow\orbr{\begin{cases}a^2=8+2\sqrt{7}\\a^2=8-2\sqrt{7}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=\sqrt{8+2\sqrt{7}}\\a=\sqrt{8-2\sqrt{7}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=1+\sqrt{7}\\a=1-\sqrt{7}\end{cases}}\)

Suy ra: \(\hept{\begin{cases}a=1+\sqrt{7}\\b=\frac{6}{a}\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=\frac{6}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1+\sqrt{7}\\b=\sqrt{7}-1\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=-1-\sqrt{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2+\sqrt{7}\\y=\sqrt{7}\end{cases}}\) hoặc \(\hept{\begin{cases}x=2-\sqrt{7}\\y=-\sqrt{7}\end{cases}}\). Kết luận:...