Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-16x=y\left(y^2-4\right)\) \(\left(1\right)\)
\(5x^2=y^2-4\) \(\left(2\right)\)
\(\Rightarrow x^3-16x=y.5x^2\Leftrightarrow x\left(x^2-5yx-16\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-5yx-16=0\)
+ \(x=0\Rightarrow y^2-4=5.0=0\Rightarrow y=2\) hoặc \(y=-2\)
Thế lại vào \(\left(1\right)\) thấy thỏa, ta được 2 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right)\)
+\(x^2-5yx-16=0\) và \(x\ne0\)
\(\Rightarrow y=\frac{x^2-16}{5x}=\frac{x}{5}-\frac{16}{5x}\)
Thế y vào \(\left(2\right)\) ta được
\(5x^2=\left(\frac{x}{5}-\frac{16}{5x}\right)^2-4\Leftrightarrow125x^2=\left(x-\frac{16}{x}\right)^2-100\Leftrightarrow125x^2=x^2+\frac{256}{x^2}-32-100\)
\(\Leftrightarrow124x^2+132-\frac{256}{x^2}=0\)\(\Leftrightarrow124x^4+132x^2-256=0\)
\(\Leftrightarrow4\left(x^2-1\right)\left(31x^2+64\right)=0\)\(\Leftrightarrow x^2=1\Leftrightarrow x=1\) hoặc \(x=-1\)
\(x=1\Rightarrow y=\frac{1}{5}-\frac{16}{1.5}=-3\)
\(x=-1\Rightarrow y=\frac{1}{-5}-\frac{16}{-5}=3\)
Thử các cặp \(\left(x,y\right)=\left(1;-3\right),\left(-1;3\right)\) vào hệ thấy thỏa mãn.
Vậy: hệ có 4 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right);\left(1;-3\right);\left(-1;3\right)\)
pt thứ (1) <=> x2 + y2 = 1 - xy
pt thứ (2) <=> (x+y)(x2 + y2 - xy) = x+ 3y
Thế pt (1) vào Pt (2) ta được
(x+y).(1 - 2xy) = x + 3y
<=> x - 2x2y + y - 2xy2 = x + 3y
<=> -2xy. (x+y) - 2y = 0
<=> y. (1 + x(x+y)) = 0
<=> y = 0 hoặc x.(x+y) = - 1
+) y = 0 => x2 = 1 => x = 1 hoặc x = -1
Từ pt thứ 2 => x3= x => x = 0 hoặc x = 1 hoặc x = -1
Vậy x = 1; y = hoặc x = -1 và y = 0
+) x.(x+y) = - 1 => x2 + xy = -1. Từ pt thứ 1
=> y2 - 1 = 1 <=> y2 = 2 => y = \(\sqrt{2}\) hoặc y = - \(\sqrt{2}\)
Thay y = \(\sqrt{2}\) vào x(x+y) = -1 => x=.....
Do \(x^3+y^3=1\) \(\Rightarrow x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5+y^5=x^5+y^5+x^2y^3+x^3y^2\)
\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}xy=0\\x+y=0\end{matrix}\right.\)
Nếu \(x+y=0\Rightarrow x^3=-y^3\Rightarrow x^3+y^3=0\) ( mâu thuẫn)
Nếu \(xy=0\) \(\Rightarrow x^3+y^3=1\Rightarrow\left(x+y\right)^3=1\Rightarrow x+y=1\)
ta có\(\left\{{}\begin{matrix}xy=0\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left(x,y\right)=\left\{\left(1,0\right);\left(0,1\right)\right\}\)
+Nếu x = 0 thì \(pt\text{ (1) trở thành: }0=1\text{ (vô lí)}\)
+Xét \(x\ne0\)
\(pt\text{ (1)}\Leftrightarrow y=\frac{x^2-1}{x},\text{ thay vào }pt\text{ (2), ta được:}\)
\(\left(\frac{x^2-1}{x}\right)^2-3.\frac{x^2-1}{x}+6x=0\)
\(\Leftrightarrow\left(x^2-1\right)^2-3x\left(x^2-1\right)+6x^3=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-2+\sqrt{3}\text{ hoặc }x=-2-\sqrt{3}\)
\(+x=-2+\sqrt{3}\text{ thì }y=2\sqrt{3}\)
\(+x=-2-\sqrt{3}\text{ thì }y=-2\sqrt{3}\)
Kết luận: \(\left(x;y\right)=\left(-2+\sqrt{3};2\sqrt{3}\right);\left(-2-\sqrt{3};-2\sqrt{3}\right)\)
$\begin{cases}3(x-1)+2(y-3)=-5\\(x+y-1)^2=(x+y)^2\\\end{cases}$
`<=>` $\begin{cases}3x-3+2y-6=-5\\(x+y-x-y+1)(x+y+x+y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\1.(2x+2y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\2x+2y=1\\\end{cases}$
`<=>` $\begin{cases}3x-2x=4-1=3\\2y=1-2x\\\end{cases}$
`<=>` $\begin{cases}x=3\\y=\dfrac{1-2x}{2}=-\dfrac52\\\end{cases}$
Vậy HPT có nghiệm `x,y=(3,-5/2)`