Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK: \(x\ge1;y\ge1\)
Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\) và \(\sqrt{y-1}=b\left(b\ge0\right)\)
Khí đó hệ phương trình trở thành:
\(\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a-1\\a+2a-1=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2.1-1\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)(tm)
* a = 1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)(tmđk)
* b = 1 \(\sqrt{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\) (tmđk)
Vậy nghiệm của hệ phương trình là (2;2)
b. Đặt \(\left(x-1\right)^2=a\) ( a \(\ge\) 0)
Khi đó hệ phương trình đã cho trở thành :
\(\left\{{}\begin{matrix}a-2y=2\\3a+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2+2y\\3\left(2+2y\right)+3y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2+2.\left(-\dfrac{5}{9}\right)\\y=-\dfrac{5}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{9}\\y=-\dfrac{5}{9}\end{matrix}\right.\)(tmđk)
* a = \(\dfrac{8}{9}\Leftrightarrow\) \(\left(x-1\right)^2=\dfrac{8}{9}=\left(\pm\dfrac{2\sqrt{2}}{3}\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{2}}{3}+1\\x=-\dfrac{2\sqrt{2}}{3}+1\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình là \(\left(\dfrac{2\sqrt{2}}{3};-\dfrac{5}{9}\right);\left(\dfrac{-2\sqrt{2}}{3};-\dfrac{5}{9}\right)\)
Điều kiện x>0; y\(\ne\)0
Phương trình thứ nhất của hệ tương đương với:
\(\frac{1}{\sqrt{x}}+\frac{y}{x}=\frac{2\sqrt{x}}{y}+2\Leftrightarrow\sqrt{x}+y^2=2x\sqrt{x}+2xy\Leftrightarrow y^2+y\left(\sqrt{x}-2x\right)-2x\sqrt{x}=0\)
Xem đây là hpt bậc hau theo biến y, ta có:
\(\Delta_x=\left(\sqrt{x}-2x\right)^2+8x\sqrt{x}=x+4x\sqrt{x}+4x^2=\left(\sqrt{x}+2x\right)^2>0\)
Do đó, phương trunhf này có 2 nghiệm là:
\(y_1=\frac{\left(2x-\sqrt{x}\right)-\left(\sqrt{x}+2x\right)}{2}=-\sqrt{x},y_2=\frac{\left(2x-\sqrt{x}\right)+\left(\sqrt{x}+2x\right)}{2}=2x\)
xét 2 trường hopej
-Nếu \(y=-\sqrt{x}\)thay vào phương trình thứ hai của hệ ta được
\(-\sqrt{x}\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\)
Dễ thấy: \(-\sqrt{x}\left(\sqrt{x^2+1}-1\right)< 0< \sqrt{3x^2+3}\)nên phương trình này vô nghiệm
Nếu y=2x, thay vào pt thứ 2 của hệ ta được
\(2x\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\Leftrightarrow\sqrt{x^2+1}\left(2x-\sqrt{3}\right)=2x\Leftrightarrow\sqrt{x^2+1}=\frac{2x}{2x-\sqrt{3}}\)(*)
(dễ thấy \(x=\frac{\sqrt{3}}{2}\)ktm đẳng thức nên chỉ xét \(x\ne\frac{\sqrt{3}}{2}\)và phép biến đổi trên là phù hợp)
Xét 2 hàm số \(f\left(x\right)=\sqrt{x^2+1},x>0\)và \(g\left(x\right)=\frac{2x}{2x-\sqrt{3}};x>0\)
Ta có \(f'\left(x\right)=\frac{x}{\sqrt{x^2+1}}>0\)nên là hàm đồng biến \(g'\left(x\right)=\frac{-2\sqrt{3}}{\left(2x-\sqrt{3}\right)^2}< 0\)nên là hàm nghịch biến
=> PT (*) không có quá 1 nghiệm
Nhẩm thấy x=\(\sqrt{3}\)thỏa mãn (*) nên đây cũng là nghiệm duy nhất của (*)
Vậy hệ đã cho có nghiệm duy nhất là: \(\left(x;y\right)=\left(\sqrt{3};2\sqrt{3}\right)\)
\(ĐKXĐ:-1\le x\le2;-1\le y\le2\)
\(HPT\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\left(\sqrt{x+1}-\sqrt{y+1}\right)-\left(\sqrt{2-x}-\sqrt{2-y}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\frac{x-y}{\sqrt{x+1}-\sqrt{y+1}}+\frac{x-y}{\sqrt{2-x}+\sqrt{2-y}}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\left(x-y\right)\left(\frac{1}{\sqrt{x+1}-\sqrt{y+1}}+\frac{1}{\sqrt{2-x}+\sqrt{2-y}}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le x\le2;-1\le y\le2\\x=y\\\sqrt{x+1}+\sqrt{2-x}=\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le x\le2;-1\le y\le2\\x=y\\3+2\sqrt{\left(x+1\right)\left(2-x\right)}=3\left(3\right)\end{cases}}\)
Giải phương trình 3 ta được 2 nghiệm là -1 và 2
Vậy hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{2-x}+\sqrt{y-1}=\sqrt{3}\end{cases}}\)có 2 nghiệm là (-1;-1) và (2;2)
ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)