Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
Ta có:
x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)
⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1
⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)
Đặt (x2+1;x+1)=d(x2+1;x+1)=d
⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d
⟹2⋮d⟹2⋮d
Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1
⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2
Từ đây dễ dàng suy ra x=0x=0
⟹y=0;y=−1⟹y=0;y=−1
Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)
+Nếu x = 0 thì \(pt\text{ (1) trở thành: }0=1\text{ (vô lí)}\)
+Xét \(x\ne0\)
\(pt\text{ (1)}\Leftrightarrow y=\frac{x^2-1}{x},\text{ thay vào }pt\text{ (2), ta được:}\)
\(\left(\frac{x^2-1}{x}\right)^2-3.\frac{x^2-1}{x}+6x=0\)
\(\Leftrightarrow\left(x^2-1\right)^2-3x\left(x^2-1\right)+6x^3=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-2+\sqrt{3}\text{ hoặc }x=-2-\sqrt{3}\)
\(+x=-2+\sqrt{3}\text{ thì }y=2\sqrt{3}\)
\(+x=-2-\sqrt{3}\text{ thì }y=-2\sqrt{3}\)
Kết luận: \(\left(x;y\right)=\left(-2+\sqrt{3};2\sqrt{3}\right);\left(-2-\sqrt{3};-2\sqrt{3}\right)\)
1/ đặt x+y = a
xy=b
Ta có a(a2 - 3b) = 19
a(8+b)=2
Dùng phương pháp thế rồi giải tìm được a=1; b=-6
Từ đó ta suy ra x=-2 và y=3 hoặc x=3 và y =-2
2/ ta có 3x2 +4 xy + y2 = 0 <=> (2x+y)2 - x2 = 0 <=> (3x+y)(x+y)=0 từ đó dùng phương pháp thế vào phương trình còn lại là ra
- x-y-xy=3 =>xy=x-y-3(1)
- x^2+xy+y^2=1=>(x+y)^2-xy=1
=>(x+y)^2-x+y+3=1
kết hợp với (1) giải ra
b) \(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\\left(x+1\right)^2+3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+1\right)^2-6y=6\left(1\right)\\2\left(x-1\right)^2+6y=2\left(2\right)\end{matrix}\right.\)
Cộng theo vế 2 pt trên, ta có
\(3\left(x+1\right)^2+2\left(x-1\right)^2=8\)
\(\Leftrightarrow5x^2+2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-1\end{matrix}\right.\)
Từ đó dễ dàng tìm được y.
a) \(\left\{{}\begin{matrix}\left(x+y\right)^2=50\left(1\right)\\x+5\left(y-1\right)=xy\left(2\right)\end{matrix}\right.\)
Ta viết lại pt (2)
\(x+5\left(y-1\right)=xy\)
\(\Leftrightarrow\left(x-xy\right)+5\left(y-1\right)=0\)
\(\Leftrightarrow x\left(1-y\right)-5\left(1-y\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
- TH1: Thay x = 5 vào pt (1) tìm được \(\left[{}\begin{matrix}y=-5+5\sqrt{2}\\y=-5-5\sqrt{2}\end{matrix}\right.\)
- TH2: Thay y = 1 vào pt (1) tìm được \(\left[{}\begin{matrix}x=-1+5\sqrt{2}\\x=-1-5\sqrt{2}\end{matrix}\right.\)
pt thứ (1) <=> x2 + y2 = 1 - xy
pt thứ (2) <=> (x+y)(x2 + y2 - xy) = x+ 3y
Thế pt (1) vào Pt (2) ta được
(x+y).(1 - 2xy) = x + 3y
<=> x - 2x2y + y - 2xy2 = x + 3y
<=> -2xy. (x+y) - 2y = 0
<=> y. (1 + x(x+y)) = 0
<=> y = 0 hoặc x.(x+y) = - 1
+) y = 0 => x2 = 1 => x = 1 hoặc x = -1
Từ pt thứ 2 => x3= x => x = 0 hoặc x = 1 hoặc x = -1
Vậy x = 1; y = hoặc x = -1 và y = 0
+) x.(x+y) = - 1 => x2 + xy = -1. Từ pt thứ 1
=> y2 - 1 = 1 <=> y2 = 2 => y = \(\sqrt{2}\) hoặc y = - \(\sqrt{2}\)
Thay y = \(\sqrt{2}\) vào x(x+y) = -1 => x=.....
1/x+1/y+1/2xy=1/2
Tìm nghiệm tự nhiên