\(\sqrt{2x-2}+\sqrt{x+3}=3\)

mọi người giải giúp mìn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

ĐK: \(x\ge1\)

\(PT\Leftrightarrow\sqrt{2x-2}=3-\sqrt{x+3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\ge\sqrt{x+3}\\2x-2=9-6\sqrt{x+3}+x+3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le6\\14-x=6\sqrt{x+3}\end{matrix}\right.\)(kết hợp đk)

\(\Rightarrow\left\{{}\begin{matrix}1\le x\le6\\196-28x+x^2=36x+108\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1\le x\le6\\x^2-64x+88=0\end{matrix}\right.\Rightarrow x=32-6\sqrt{26}\)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

19 tháng 9 2016

nhập PT vào máy tính, sử dụng dầu "=" ô nút CALC.

sau khi nhập xong, nhấn SHIFT,CALC, rồi nhấn dấu =

Ta được x=-1,322875656

6 tháng 7 2020

\(\hept{\begin{cases}3x-y=3\sqrt{x+y}\\3x+y=3\sqrt{x-y}\end{cases}\left(x-y;x+y\ge0\right)}\)

Đặt : \(\hept{\begin{cases}x+y=u\\x-y=v\\2x=u+v\end{cases}\left(u;v;x\ge0\right)}\)thì pt tương đương :

\(\hept{\begin{cases}u+2v=3\sqrt{u}\\v+2u=3\sqrt{v}\end{cases}}\)

\(< =>\hept{\begin{cases}u^2+4v^2+4uv=9u\\v^2+4u^2+4uv=9v\end{cases}}\)

\(< =>\hept{\begin{cases}u^2-9u+\left(4v^2+4uv\right)=0\\v^2-9v+\left(4u^2+4uv\right)=0\end{cases}}\)

Đến đây bạn giải delta và xét theo đk là xong 

2 tháng 7 2017

a) chắc là nhóm lại thui để sau mk làm:v

b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

Đk: tự lm nhé :v

\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)

\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)

\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)

Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

3 tháng 7 2017

ban tra loi nhanh giup mk nhe

15 tháng 11 2019

ĐK \(x\ge-3\)

PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)

<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)

+  Với x=-3 =>thỏa mãn 

+Với \(x>-3\) ta liên hợp

\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)

<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)

Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)

=> \(x=1\)(TMĐKXĐ)

Vậy \(x=1;x=-3\)

22 tháng 8 2019

\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)

\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)

\(\Leftrightarrow x^2+4=4x+8\)

\(\Leftrightarrow x^2-4x-4=0\)

\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)

Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)

P/S: Ko chắc

\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)

\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Rightarrow x^2+4=2x+4\)

\(\Rightarrow x^2+4-2x-4=0.\)

\(\Rightarrow x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy .............

Study well