Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)
cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ
suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý
vậy pt vô nghiệm
\(x^3+2x-2x^2-4+x^2y+2y=0\)
\(\Leftrightarrow x\left(x^2+2\right)-2\left(x^2+2\right)+y\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow x+y-2=0\Rightarrow y=2-x\)
Thay vào pt dưới:
\(x^2-x\left(2-x\right)-4x-1=\sqrt{4x+5}\) (ĐKXĐ:...)
\(\Leftrightarrow2x^2-6x-1=\sqrt{4x+5}\)
\(\Rightarrow\left(2x^2-6x-1\right)^2=4x+5\)
\(\Leftrightarrow x^4-4x^3+3x^2+x-1=0\)
\(\Leftrightarrow\left(x^2-4x+1\right)\left(x^2-2x-1\right)=0\)
1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)
\(\Rightarrow\) phương trình vô nghiệm
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
a,\(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-14x+6y=-10\\15x+6y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(\Leftrightarrow2x-y=3\)
b,\(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow2x-y=3\)
Vậy hệ phương trình có vô số nghiệm (x;y)= (a;2a-3), a tùy ý
c, \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,6x-0,4y=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=20,5\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{3}{5}x-\dfrac{1}{2}y=\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{6}y=\dfrac{8}{5}\\\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{14}{11}\\y=-\dfrac{48}{55}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
Phương trình đầu trở thành:
\(\left(1-b^2\right)a+a^2+b^2=2+\left(a^2-1\right)b\)
\(\Leftrightarrow a+b+a^2+b^2-a^2b-ab^2-2=0\)
\(\Leftrightarrow a-1+b-1-a^2\left(b-1\right)-b^2\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b^2\right)\left(a-1\right)+\left(a^2-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)\left(2+a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y+1\\y=1\end{matrix}\right.\)
Trường hợp \(y=1\) đơn giản bạn tự thay xuống giải
- Với \(x=y+1\)
\(2y^2-3\left(y+1\right)+6y+1-2\sqrt{1-y}+\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+3y-2-\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+2y-2+y-\sqrt{1-y}=0\)
\(\Leftrightarrow2\left(y^2+y-1\right)+\frac{y^2+y-1}{y+\sqrt{1-y}}=0\)
Nhớ nhìn căn thức và loại nghiệm theo ĐKXĐ
\(\left\{{}\begin{matrix}\left(x^2-2\right)^2+\left(y-3\right)^2=4\\\left(y+1\right)\left(x^2+2\right)=24\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-2\right)^2+\left(y-3\right)^2=4\\y-3=\frac{24}{x^2+2}-4\end{matrix}\right.\)
\(\Rightarrow\left(x^2-2\right)^2+\left(\frac{24}{x^2+2}-4\right)^2=4\)
Đặt \(a=x^2+2\)
\(\Rightarrow\left(a-4\right)^2+\left(\frac{24}{a}-4\right)^2=4\)
\(\Leftrightarrow a^4-8a^3+28a^2-192a+576=0\)
\(\Leftrightarrow\left(a^2-10a+24\right)\left(a^2+2a+24\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=6;y=3\\a=4;y=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=4;y=3\\x^2=2;y=5\end{matrix}\right.\)
đến đây có thể kết luận nghiệm rồi ạ