K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Lời giải:
Lấy PT(1) cộng PT(2) thu được:

\(2x^3-x^2-2xy-3xy^2-y^2-y^3-1=0\)

\(\Leftrightarrow (2x^3-3xy^2-y^3)-(x^2+2xy+y^2)-1=0\)

\(\Leftrightarrow [2x^2(x+y)-2xy(x+y)-y^2(x+y)]-(x+y)^2-1=0\)

\(\Leftrightarrow (2x^2-2xy-y^2)(x+y)-(x+y)^2-1=0\)

\(\Leftrightarrow 2(x+y)-(x+y)^2-1=0\)

\(\Leftrightarrow -(x+y-1)^2=0\Rightarrow x+y=1\Rightarrow y=1-x\)

Thay vào PT(1) ta có:

\(2x^2-2x(1-x)-(1-x)^2=2\)

\(\Leftrightarrow 3x^2-3=0\Rightarrow x=\pm 1\)

\(x=1\Rightarrow y=0; x=-1\Rightarrow y=2\) (thỏa mãn)

Vậy $(x,y)=(1,0); (-1,2)$

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bạn tham khảo tại link sau:

Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến

NV
3 tháng 11 2019

ĐKXĐ: ....

Đặt \(\sqrt{y+1}=a\Rightarrow y=a^2-1\)

\(\left\{{}\begin{matrix}x^2a-2x\left(a^2-1\right)-2x=1\\x^3-3x-3x\left(a^2-1\right)=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2a-2a^2x=1\\x^3-3xa^2=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(ax-2a^2\right)=1\\x\left(x^2-3a^2\right)=6\end{matrix}\right.\)

\(\Rightarrow\frac{ax-2a^2}{x^2-3a^2}=\frac{1}{6}\Rightarrow6ax-12a^2=x^2-3a^2\)

\(\Leftrightarrow x^2-6ax+9a^2=0\)

\(\Leftrightarrow\left(x-3a\right)^2=0\Rightarrow x=3a\)

\(\Rightarrow x=3\sqrt{y+1}\Rightarrow y=\frac{x^2-9}{9}\) (\(x>0\))

\(\Rightarrow x^3-3x-\frac{3x\left(x^2-9\right)}{9}=6\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Lấy PT(1) trừ đi PT(2) ta thu được:

$x^2+xy-x+y-2y^2=0$

$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$

$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$

$\Leftrightarrow (x-y)(x+2y-1)=0$

$\Rightarrow x-y=0$ hoặc $x+2y-1=0$

Nếu $x-y=0\Rightarrow x=y$

Thay vào PT(1): $2y^2+3y^2+2y+y=0$

$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$

$y=0$ thì $x=0$

$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$

Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):

$2x^2+2x(1-x)+(1-x)^2+6x=0$

$\Leftrightarrow x^2+6x+1=0$

$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$

Vậy.......

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Lấy PT(1) trừ đi PT(2) ta thu được:

$x^2+xy-x+y-2y^2=0$

$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$

$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$

$\Leftrightarrow (x-y)(x+2y-1)=0$

$\Rightarrow x-y=0$ hoặc $x+2y-1=0$

Nếu $x-y=0\Rightarrow x=y$

Thay vào PT(1): $2y^2+3y^2+2y+y=0$

$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$

$y=0$ thì $x=0$

$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$

Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):

$2x^2+2x(1-x)+(1-x)^2+6x=0$

$\Leftrightarrow x^2+6x+1=0$

$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$

Vậy.......

11 tháng 11 2018

Bạn ơi ! Đề bài đâu ạ ! Có mỗi chữ giải hệ phương trình à !

29 tháng 11 2019

ko có đề bài à

27 tháng 2 2018

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y