K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
7 tháng 1 2017
\(\hept{\begin{cases}ax+y+z=a^2\left(1\right)\\x+ay+z=3a\left(2\right)\\x+y+az=2\left(3\right)\end{cases}}\)
Lấy (1) + (2) + (3) vế theo vế được
\(\left(2+a\right)\left(x+y+z\right)=a^2+3a+2=\left(a+2\right)\left(a+1\right)\)
Với a = -2 thì
\(0.\left(x+y+z\right)=0\)bạn làm tiếp nhé
Với a # -2 thì
\(x+y+z=a+1\left(4\right)\)
Lấy (4) lần lược - cho (1), (2), (3) thì tìm được x,y,z
Từ pt 1 ta có thể biến đổi : \(ax+y+z=a^2\)
\(< =>a=\frac{ax+y+z}{a}\)
\(< =>x+y+z=a\)
\(< =>3x+3y+3z=x+ay+z\)
\(< =>2x+y\left(3-a\right)+2z=0\)
\(< =>2a+y-ay=0\)
\(< =>2a+y-ay-2=-2\)
\(< =>a\left(2-y\right)-\left(2-y\right)=-2\)
\(< =>\left(a-1\right)\left(2-y\right)=2.\left(-1\right)=-1.2=-2.1=1.\left(-2\right)\)
\(< =>\left(a;y\right)=\left(3;3\right)=\left(0;0\right)=\left(-1;1\right)=\left(2;4\right)\)
Bạn thay vào là đc :)) giải sai hay đúng cg ko bt nx :(