K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

ĐKXĐ: \(x\ge1;y\ge0\)

\(xy+x+y=x^2-2y^2\Leftrightarrow x^2-\left(y+1\right)x-2y^2-y=0\)

\(\Delta=\left(y+1\right)^2+4\left(2y^2+y\right)=\left(3y+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{y+1+3y+1}{2}=2y+1\\x=\frac{y+1-3y-1}{2}=-y\le0< 1\left(l\right)\end{matrix}\right.\)

Thay \(x=2y+1\) vào pt dưới:

\(\left(2y+1\right)\sqrt{2y}-3\sqrt{2y}=2\left(2y+1\right)-2y\)

\(\Leftrightarrow\left(2y-2\right)\sqrt{2y}=2y+2\)

Đặt \(\sqrt{2y}=a\ge0\Rightarrow\left(a^2-2\right)a=a^2+2\)

\(\Leftrightarrow a^3-a^2-2a-2=0\)

Đến đây ko biết giải kiểu gì :(

7 tháng 11 2019

cậu viết thế nào thế bảo cho mk vs

NV
30 tháng 5 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(\Leftrightarrow2x^3=x^3+y^3\)

\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)

Thay vào pt đầu:

\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)

NV
30 tháng 5 2020

a/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với

Theo Viet đảo, a và b là nghiệm của:

\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)

31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((

NV
14 tháng 6 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\y\ge0\end{matrix}\right.\) \(\Rightarrow x+y>0\)

\(xy+x+y=x^2-2y^2\Leftrightarrow\left(x^2-xy-2y^2\right)-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y-1\right)=0\)

\(\Leftrightarrow x-2y-1=0\Rightarrow x=2y+1\)

Thay xuống pt dưới:

\(\left(2y+1\right)\sqrt{2y}-y\sqrt{2y}=2y+2\)

\(\Leftrightarrow\sqrt{2y}\left(y+1\right)=2\left(y+1\right)\)

\(\Leftrightarrow\sqrt{2y}=2\Rightarrow y=2\Rightarrow x=5\)

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2018

Lời giải:

Xét PT thứ nhất:

\(x^2-2y^2=xy+x+y\)

\(\Leftrightarrow x^2-y^2=xy+x+y+y^2\)

\(\Leftrightarrow (x-y)(x+y)=(y+1)(x+y)\)

\(\Leftrightarrow (x+y)(x-y-y-1)=0\)

\(\Rightarrow \left[\begin{matrix} x+y=0\\ x-2y=1\end{matrix}\right.\)

Ta thấy theo pt thứ 2, thì ĐKXĐ là \(y\geq 0;x\geq 1\)

\(\Rightarrow x+y\geq 1>0\)

Suy ra \(x-2y=1\Rightarrow x=2y+1\). Thay vào pt thứ 2:

\((2y+1)\sqrt{2y}-y\sqrt{2y}=4y+2-y+1\)

\(\Leftrightarrow (y+1)\sqrt{2y}=3y+3\)

\(\Leftrightarrow (y+1)(\sqrt{2y}-3)=0\)

Vì $y\geq 0$ nên $y+1\neq 0$. Do đó \(\sqrt{2y}=3\Rightarrow y=\frac{9}{4}\)

Kéo theo \(x=\frac{11}{2}\)

Vậy..........

23 tháng 8 2018

Phần cuối bạn tính sai rồi nhé .