Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)
cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ
suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý
vậy pt vô nghiệm
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x}=a\\\sqrt[3]{y}=b\end{matrix}\right.\) \(\Rightarrow a+b=6\)
Biến đổi pt đầu:
\(2\left(a^3+b^3\right)=3\left(a^2b+ab^2\right)\Leftrightarrow2\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)=3ab\left(a+b\right)\)
\(\Leftrightarrow2\left(36-3ab\right)=3ab\Rightarrow ab=8\) \(\Rightarrow\left\{{}\begin{matrix}a+b=6\\ab=8\end{matrix}\right.\)
Theo Viet đảo, a và b là nghiệm: \(t^2-6t+8=0\) \(\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4^3=64\\y=2^3=8\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=64\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
Lời giải:
Dễ thấy $y=0$ không phải một nghiệm thỏa mãn
\(\Rightarrow y\neq 0\)
\(x^5+xy^4=y^{10}+y^6\Leftrightarrow x(x^4+y^4)=y^{10}+y^6>0\)
\(\Rightarrow x>0\)
Từ PT(1) \(\Rightarrow x^5+xy^4-(y^{10}+y^6)=0\)
\(\Leftrightarrow (x^5-y^{10})+(xy^4-y^6)=0\)
\(\Leftrightarrow (x-y^2)(x^4+x^3y^2+x^2y^4+xy^6+y^8)+y^4(x-y^2)=0\)
\(\Leftrightarrow (x-y^2)(x^4+x^3y^2+x^2y^4+xy^6+y^8+y^4)=0\)
Với mọi $x>0; y\neq 0$ ta luôn có:
\(x^4+x^3y^2+x^2y^4+xy^6+y^8+y^4>0\)
Do đó \(x-y^2=0\Rightarrow x=y^2\)
Thay vào PT(2):
\(\sqrt{4x+5}+\sqrt{x+8}=6\)
\(\Leftrightarrow (\sqrt{4x+5}-3)+(\sqrt{x+8}-3)=0\)
\(\Leftrightarrow \frac{4(x-1)}{\sqrt{4x+5}+3}+\frac{x-1}{\sqrt{x+8}+3}=0\)
\(\Leftrightarrow (x-1)\left(\frac{4}{\sqrt{4x+5}+3}+\frac{1}{\sqrt{x+8}+3}\right)=0\)
Hiển nhiên biểu thức trong " ngoặc lớn" lớn hơn $0$
\(\Rightarrow x-1=0\Rightarrow x=1\) (thỏa mãn)
\(\Rightarrow y^2=1\Rightarrow y=\pm 1\)
Vậy \((x,y)=(1,\pm 1)\)