K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2020

Ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(=x^2+y^2+z^2+2.1=x^2+y^2+z^2+2\left(2y^2-3z^2\right)\)\(=x^2+5y^2-5z^2\)

\(\Leftrightarrow\left(x+y+z\right)^2-x^2+5\left(z-y\right)\left(z+y\right)=0\)

\(\Leftrightarrow\left(2x+y+z\right)\left(y+z\right)+5\left(z-y\right)\left(z+y\right)=0\)

\(\Leftrightarrow\left(y+z\right)\left(2x+y+z+5z-5y\right)=0\)

\(\Leftrightarrow\left(y+z\right)\left(2x-4y+6z\right)=0\)

\(\Leftrightarrow\left(y+z\right)\left(x-2y+3z\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=-z\\x-2y+3z=0\end{cases}}\)

Với y=-z ta có: \(2y^2-3z^2=1\Rightarrow2y^2-3y^2=1\Leftrightarrow-y^2=1\)( do \(y^2\ge0\)) => pt  vô nghiệm

8 tháng 4 2017

Em học lớp 4 thôi nên ko hiểu gì đâu ạ

13 tháng 6 2018

\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)

Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)

Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry

Mình theo olm từ hồi thi violympic toán tỉnh.... bây giờ cũng đã sắp thi cấp 3. thời gian trôi nhanh quá :(

Web này là 1 phần kỉ niệm của mình. Mình muốn góp một chút cho web. Chúc bạn thi tốt nhé !

ĐK: x>=1-2y, 1>=x>=-2 

PT(2)=>\(\left(2y+x\right)\left(y^2-x-y\right)=0\) 0=>2y=-x hoặc y^2-y=x

Với 2y=-x thì vi phạm điều kiện xác định do x+2y-1=-2y+2y-1=-1

Với y^2-y=x=> \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}=y^2-y+2\)

\(ĐKXĐ:\frac{\sqrt{5}+1}{2}\ge y\ge\frac{\sqrt{5}-1}{2}\)

GIẢi pt này ra y=1 => 0=x (tm)

Nếu bạn chưa hiểu PT cuối thì đây là cách mình giải nó \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}\le\frac{1}{2}\left(2y+2\right)\left(am-gm\right)\)

\(=>VT\le y+1\le y^2-y+2\Leftrightarrow\left(y-1\right)^2\ge0\)

DB xảy ra khi y=1 (TMĐK)

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2