Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định \(x,y>0\)
Hệ đã cho tương đương với
\(\hept{\begin{cases}\sqrt{x}-\sqrt{y}+\frac{3}{\sqrt{x}}-\frac{3}{\sqrt{y}}=0\left(1\right)\\2x-\sqrt{xy}=1\left(2\right)\end{cases}}\)
Giải (1) \(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)-3\left(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(1-\frac{3}{\sqrt{xy}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-\sqrt{y}=0\\1-\frac{3}{\sqrt{xy}}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{y}\\\frac{3}{\sqrt{xy}}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=y\\\sqrt{xy}=3\end{cases}.}\)
Với x=y ta thế vào (2) có \(2x-\sqrt{x^2}=1\Leftrightarrow x=1\left(TMĐK\right)\)
\(\Rightarrow x=y=1\)
Với \(\sqrt{xy}=3\)thế vào (2) có \(2x-3=1\Leftrightarrow x=2\left(TMĐK\right)\)
\(\Rightarrow\sqrt{2y}=3\Leftrightarrow y=\frac{9}{2}\left(TMĐK\right)\)
Vậy hệ có 2 nghiệm.......
Xét phương trình đầu ta có:
\(\frac{3}{xyz}=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz.\sqrt[3]{xyz}\le1\)
\(\Leftrightarrow xyz\le1\)(1)
Xét phương trình 2 ta có
\(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\)
\(\Leftrightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=9\)
\(\Leftrightarrow\frac{3}{xyz}+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=9\)
\(\Leftrightarrow9=\frac{1}{xyz}+\frac{1}{xyz}+\frac{1}{xyz}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\ge9\sqrt[9]{\frac{1}{xyz}}\)
\(\Rightarrow1\ge\sqrt[9]{\frac{1}{xyz}}\)
\(\Leftrightarrow xyz\ge1\)(2)
Từ (1) và (2) suy ra xyz = 1
Dấu = xảy ra khi x = y = z = 1
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
\(\hept{\begin{cases}\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=\frac{3}{2}\left(1\right)\\x+y+xy=9\left(2\right)\end{cases}}\)
Đặt \(\sqrt{\frac{x}{y}}=a>0\) thì
\(\left(1\right)\Leftrightarrow a+\frac{1}{a}=\frac{3}{2}\)
\(\Leftrightarrow2a^2-3a+2=0\)
Ta có: \(2a^2-3a+2=2\left(a-1\right)^2+a>0\)
Vậy hệ vô nghiệm
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
\(\hept{\begin{cases}\frac{x}{\sqrt{y}}+\frac{2\sqrt{y}}{x}=\frac{2}{x}+\frac{1}{\sqrt{y}}-3\left(1\right)\\x^2-xy-9x+12=0\left(2\right)\end{cases}}\)
Đặt \(\frac{2}{x}=a,\frac{1}{\sqrt{y}}=b\left(b>0\right)\)
\(\left(1\right)\Leftrightarrow\frac{2b}{a}+\frac{a}{b}=a+b-3\)
\(\Leftrightarrow2b^2+a^2+3ab=ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a+2b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(a-ab+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-b\left(3\right)\\a-ab+2b=0\left(4\right)\end{cases}}\)
Giải (3)
\(\left(3\right)\Leftrightarrow\frac{2}{x}=-\frac{1}{\sqrt{y}}\Leftrightarrow\frac{4}{x^2}=\frac{1}{y}\)
\(\Leftrightarrow y=\frac{x^2}{4}\). Thay vào (2) tìm nghiệm (x,y)
Giải (4)
\(\left(4\right)\Leftrightarrow\frac{2}{x}-\frac{2}{\sqrt{y}}+\frac{2}{x\sqrt{y}}=0\)
\(\Leftrightarrow\sqrt{y}-x+2=0\)
Giải tiếp là ra
Học tốt!!!!!!!!!
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)