Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x - y = y^2 - y + 1 - x^2 + x - 1 = y^2 - y -x^2 + x
=> x - y = y^2 - x^ 2 - y + x
=> x - y + y -x = ( y -x )( y + x)
=> 0 = ( y+x)(y- x)
=> x + y = 0 và x - y = 0
=> x = y = 0
\(x^3-16x=y\left(y^2-4\right)\) \(\left(1\right)\)
\(5x^2=y^2-4\) \(\left(2\right)\)
\(\Rightarrow x^3-16x=y.5x^2\Leftrightarrow x\left(x^2-5yx-16\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-5yx-16=0\)
+ \(x=0\Rightarrow y^2-4=5.0=0\Rightarrow y=2\) hoặc \(y=-2\)
Thế lại vào \(\left(1\right)\) thấy thỏa, ta được 2 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right)\)
+\(x^2-5yx-16=0\) và \(x\ne0\)
\(\Rightarrow y=\frac{x^2-16}{5x}=\frac{x}{5}-\frac{16}{5x}\)
Thế y vào \(\left(2\right)\) ta được
\(5x^2=\left(\frac{x}{5}-\frac{16}{5x}\right)^2-4\Leftrightarrow125x^2=\left(x-\frac{16}{x}\right)^2-100\Leftrightarrow125x^2=x^2+\frac{256}{x^2}-32-100\)
\(\Leftrightarrow124x^2+132-\frac{256}{x^2}=0\)\(\Leftrightarrow124x^4+132x^2-256=0\)
\(\Leftrightarrow4\left(x^2-1\right)\left(31x^2+64\right)=0\)\(\Leftrightarrow x^2=1\Leftrightarrow x=1\) hoặc \(x=-1\)
\(x=1\Rightarrow y=\frac{1}{5}-\frac{16}{1.5}=-3\)
\(x=-1\Rightarrow y=\frac{1}{-5}-\frac{16}{-5}=3\)
Thử các cặp \(\left(x,y\right)=\left(1;-3\right),\left(-1;3\right)\) vào hệ thấy thỏa mãn.
Vậy: hệ có 4 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right);\left(1;-3\right);\left(-1;3\right)\)
X2 - X = Y2 - Y
=> X2 - Y2 = X - Y
=> ( X - Y). (X + Y) - (X - Y) = 0
=> (X - Y). (X + Y + 1) = 0 => X - Y = 0 hoặc X + Y + 1 = 0
+) X - Y = 0 => X = Y => X2 + Y2 = X2 + X2 = 2X2 = 1 => X = \(\frac{1}{\sqrt{2}}\) hoặc \(\frac{-1}{\sqrt{2}}\)
=> Y = \(\frac{1}{\sqrt{2}}\) hoặc \(\frac{-1}{\sqrt{2}}\)
+) X + Y + 1 = 0 => X = -Y - 1
=> X2 + Y2 = (Y+1)2 + Y2 = 2.Y2 + 2.Y + 1 = 1 => 2Y.(Y +1) = 0 => Y = -1 hoặc Y = 0
Y = -1 => X = 0
Y = 0 => X = -1
Vậy hệ đã cho có 4 nghiệm (x;y) = \(\left(\frac{1}{\sqrt{2}};\frac{1}{\sqrt{2}}\right);\left(\frac{-1}{\sqrt{2}};\frac{-1}{\sqrt{2}}\right);\left(0;-1\right);\left(-1;0\right)\)
+Nếu x = 0 thì \(pt\text{ (1) trở thành: }0=1\text{ (vô lí)}\)
+Xét \(x\ne0\)
\(pt\text{ (1)}\Leftrightarrow y=\frac{x^2-1}{x},\text{ thay vào }pt\text{ (2), ta được:}\)
\(\left(\frac{x^2-1}{x}\right)^2-3.\frac{x^2-1}{x}+6x=0\)
\(\Leftrightarrow\left(x^2-1\right)^2-3x\left(x^2-1\right)+6x^3=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-2+\sqrt{3}\text{ hoặc }x=-2-\sqrt{3}\)
\(+x=-2+\sqrt{3}\text{ thì }y=2\sqrt{3}\)
\(+x=-2-\sqrt{3}\text{ thì }y=-2\sqrt{3}\)
Kết luận: \(\left(x;y\right)=\left(-2+\sqrt{3};2\sqrt{3}\right);\left(-2-\sqrt{3};-2\sqrt{3}\right)\)
ĐK: x,y khác -1
Xét pt thứ nhất của hệ:
\(\Leftrightarrow x\left(x+1\right)+y\left(y+1\right)=\left(x+1\right)\left(y+1\right)\) (1)
Do x,y khác -1 nên (x+1)(y+1) khác 0. Chia hai vế cho (x+1)(y+1), pt (1)
\(\Leftrightarrow\frac{x}{y+1}+\frac{y}{x+1}=1\). Đặt \(\frac{x}{y+1}=a;\frac{y}{x+1}=b\)
Hệ phương trình tương đương với \(\left\{{}\begin{matrix}a+b=1\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+2ab=1\\a^2+b^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\ab=0\end{matrix}\right.\). Theo hệ thức Viet, a, b là hai nghiệm của pt:
\(t^2-t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\).
Với a = 0; b = 1 thì \(\left\{{}\begin{matrix}\frac{x}{y+1}=0\\\frac{y}{x+1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Với a = 1; b = 0 thì \(\left\{{}\begin{matrix}\frac{x}{y+1}=1\\\frac{y}{x+1}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Vậy (x;y) = (1;0) và các hoán vị của nó.
P/s: Em ko chắc
theo hệ thức Viet đảo nha:v em ghi cứ thiếu suốt